Author: Angoletta, M.E.
Paper Title Page
WEPMP021 Frequency Modulated Capture of Cooled Coasting Ion Beams 2356
 
  • S.C.P. Albright, M.E. Angoletta
    CERN, Geneva, Switzerland
 
  Transverse space charge effects in the Low Energy Ion Ring (LEIR) at CERN have been shown to be a major source of particle losses, which can be mitigated with a larger RMS longitudinal emittance. However, due to electron cooling during the injection plateau, the longitudinal density is very high prior to RF capture. In addition there is an uncontrolled cycle to cycle variation in the revolution frequency of the coasting beam on the flat bottom, which degrades the beam quality at capture. In this paper we show that applying an RF frequency modulation during the capture process allows both a controlled blow-up of the longitudinal emittance and a very good reproducibility in the longitudinal distribution, which in turn improves beam transmission through the machine.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP021  
About • paper received ※ 29 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB068 Upgrade of CERN’s PSB Digital Low-Level RF System 3958
 
  • M.E. Angoletta, S.C.P. Albright, A. Findlay, M. Jaussi, J.C. Molendijk, N. Pittet
    CERN, Meyrin, Switzerland
 
  The CERN PS Booster (PSB) is the first circular accelerator in the LHC proton injector chain. The upgrade of this four-ring machine is underway within the framework of the LHC Injectors Upgrade project. The existing digital Low-Level RF (LLRF) system will also be upgraded. This paper outlines the LLRF capabilities required, their implementation and the challenges involved. Results of tests carried out to prepare for the LLRF upgrade are given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB068  
About • paper received ※ 13 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB069 The New Digital Low-Level RF System for CERN’s Extra Low Energy Antiproton Machine 3962
 
  • M.E. Angoletta, M. Jaussi, J.C. Molendijk
    CERN, Geneva, Switzerland
 
  CERN’s new Extra Low ENergy Antiproton accelerator/decelerator (ELENA) completed its initial commissioning in 2018. This machine is equipped with a new digital Low-Level RF (LLRF) system that implements beam and cavity loops as well as longitudinal diagnostics. ELENA’s LLRF was instrumental for machine commissioning by decelerating some 1 E7 antiprotons from 5.3 MeV to 100 keV. Commissioning with H ions took also place. Challenges faced included coping with low beam intensity and the wide frequency swing. This paper gives an overview of the LLRF system capabilities and operation. Beam results achieved with both H ions and antiprotons are also shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB069  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB070 A New Digital Low-Level RF and Longitudinal Diagnostic System for CERN’s AD 3966
 
  • M.E. Angoletta, S.C.P. Albright, A. Findlay, M. Jaussi, J.C. Molendijk, V. R. Myklebust
    CERN, Meyrin, Switzerland
 
  The Antiproton Decelerator (AD) has been routinely providing 3 E7 antiprotons since July 2000 at 100 MeV/c from 3.5 GeV/c. It will be refurbished during the Long Shutdown 2 (LS2) to provide reliable operation for the new Extra Low ENergy Antiproton (ELENA) ring. AD will be equipped with a new digital Low-Level RF (LLRF) system before its restart in 2021. Diagnostics to measure beam intensity, Δp/p and Schottky spectra will also be developed. This paper is an overview of the planned capabilities and implementations, as well as of the challenges to overcome.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB070  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)