Author: Bai, B.
Paper Title Page
THPMP002 Optics Design and Beam Dynamics Simulation for a VHEE Radiobiology Beam Line at PRAE Accelerator 3444
 
  • A. Faus-Golfe, B. Bai, Y. Han, C. Vallerand
    LAL, Orsay, France
  • R. Delorme, Y. Prezado
    IMNC, Orsay, France
  • M. Dosanjh
    CERN, Meyrin, Switzerland
  • P. Duchesne
    IPN, Orsay, France
  • V. Favaudon, C. Fouillade, P.M. Poortmans, F. Pouzoulet
    Institut Curie - Centre de Protonthérapie d’Orsay, Orsay, France
 
  The Platform for Research and Applications with Electrons (PRAE) is a multidisciplinary R&D facility gathering subatomic physics, instrumentation, radiobiology and clinical research around a high-performance electron accelerator with beam energies up to 70 MeV. In this paper we report the complete optics design and performance evaluation of a Very High Energy Electron (VHEE) innovative radiobiology study, in particular by using Grid mini-beam and FLASH methodologies, which could represent a major breakthrough in Radiation Therapy (RT) treatment modality.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP002  
About • paper received ※ 27 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP003 The PRORAD Beam Line Design for PRAE 3448
 
  • A. Faus-Golfe, B. Bai, Y. Han, C. Vallerand
    LAL, Orsay, France
  • P. Duchesne, E. J-M. Voutier
    IPN, Orsay, France
  • D. Marchand
    LPSC, Grenoble Cedex, France
 
  The PRAE (Platform for Research and Applications with Electrons) accelerator is being built at Orsay campus with the main objective of creating a multidisciplinary R&D platform, involving subatomic physics, instrumentation, radiobiology and clinical research around a high-performance electron accelerator with beam energies up to 70 MeV (planned 140 MeV). In this paper we will report the optics design and beam dynamics simulations for the beam line dedicated to subatomic physics, more specifically for the measurement of the proton radius. This measurement requires extremely low energy spread (5×10−4) and small beam sizes with low divergence at three beam energies: 30, 50 and 70 MeV. The beam line includes a D-type chicane coupled to a dechirping passive structure, which generates inductive wakefields in order to get the performances required for such measurement.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP003  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)