Author: Bondoux, D.
Paper Title Page
WEPGW004 Wire Scanner for High Intensity Ion Beam* 2466
SUSPFO007   use link to see paper's listing under its alternate paper code  
 
  • A. Beller, D. Bondoux, F. Bouly
    LPSC, Grenoble Cedex, France
 
  Funding: Part of this work supported by the European Atomic Energy Community (EURATOM) H2020 Program under grant agreement n°662186 (MYRTE project).
The goal of the project is to develop a Wire-Scanner compatible with low energy - high intensity ion beams and adaptable to various beam chamber diameters. The purpose is to obtain the 2D beam profile by passing measurement wires through the beam. Thanks to a high speed passage of measurement wires, it allows to avoid "disrupting" the beam passage, and can be considered as a non-destructive diagnosis. Wires heating and measuring issues have been solved by using tungsten wires kept in tension by a mechanical system. All driving and signal measurements are performed by a PXI based system. The synchronization of the measurements is guaranteed by an analog input board recovering the wires current and the translator position, the latter being carried out by a laser sensor. Besides this technological aspect, an optimization algorithm for beam profile reconstruction from measured data under Gaussian hypothesis has been developed. The standalone system and first experimental results are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW004  
About • paper received ※ 13 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW030 Towards the First Beams from the ADIGE Injector for the SPES Project 3647
 
  • A. Galatà, L. Bellan, J. Bermudez, G. Bisoffi, D. Bortolato, M. Comunian, A. Conte, M. De Lazzari, P. Francescon, F. Gelain, D. Marcato, M.O. Miglioranza, M.F. Moisio, E. Munaron, S. Pavinato, D. Pedretti, A. Pisent, M. Roetta, C. R. Roncolato, M. Rossignoli, G. Savarese
    INFN/LNL, Legnaro (PD), Italy
  • V. Andreev
    ITEP, Moscow, Russia
  • J. Angot, D. Bondoux, T. Thuillier
    LPSC, Grenoble Cedex, France
  • M.A. Bellato
    INFN- Sez. di Padova, Padova, Italy
 
  The ADIGE (Acceleratore Di Ioni a Grande carica Esotici) injector of the SPES (Selective Production of Exotic Species) project is now in an advanced phase of installation. Its main components have been designed following particular needs of the project: first, an Electron Cyclotron Resonance (ECR)-based Charge Breeder (SPES-CB), to boost the charge states of the radioactive ions produced at SPES and allow their post-acceleration. Then, a stable 1+ source and a complete electrostatic beam line to characterize the SPES-CB. Finally, a unique Medium Resolution Mass Spectrometer (MRMS, R=1/1000), mounted on a high voltage platform downstream the SPES-CB, to clean the radioactive beam from the contaminants induced by the breeding stage. This contribution describes the status of the injector, in particular the installation of the platform housing the MRMS, the access and safety system adopted and the first beams to be extracted from the stable 1+ source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW030  
About • paper received ※ 30 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS007 MYRRHA 80 kW CW RF Coupler Design 4115
 
  • Y. Gómez Martínez, M.A. Baylac, D. Bondoux, F. Bouly, P.-O. Dumont
    LPSC, Grenoble Cedex, France
  • S. Blivet, C. Joly, J. Lesrel, H. Saugnac
    IPN, Orsay, France
  • W. Kaabi
    LAL, Orsay, France
 
  MYRRHA [1] (Multi Purpose Hybrid Reactor for High Tech Applications) is an Accelerator Driven System (ADS) project. Its superconducting linac will provide a 600 MeV - 4 mA proton beam. The first project phase based on a 100 MeV linac is launched. The Radio-Frequency (RF) couplers have been designed to handle 80 kW CW at 352.2 MHz. This paper describes the thermal, mechanical and RF studies leading to the final design of the RF coupler.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS007  
About • paper received ※ 10 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)