Author: Borland, M.
Paper Title Page
TUPTS113 Microwave Thermionic Electron Gun for Synchrotron Light Sources 2189
  • S.V. Kutsaev, R.B. Agustsson, R.D. Berry, D. Chao, O. Chimalpopoca, A.Yu. Smirnov, K.V. Taletski, A. Verma
    RadiaBeam, Santa Monica, California, USA
  • M. Borland, A. Nassiri, Y. Sun, G.J. Waldschmidt, A. Zholents
    ANL, Argonne, Illinois, USA
  Funding: This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, under contracts DE-SC0015191 and DE- AC02-06CH11357.
Thermionic RF guns are the source of electrons used in many practical applications, such as drivers for synchrotron light sources, preferred for their compactness and efficiency. RadiaBeam Technologies has developed a new thermionic RF gun for the Advanced Photon Source at Argonne National Laboratory, which would offer substantial improvements in reliable operations with a robust interface between the thermionic cathode and the cavity, as well as better RF performance, compared to existing models. This improvement became possible by incorporating new pi-mode electromagnetic design, robust cavity back plate design, and a cooling system that will allow stable operation for up to 1 A of beam current and 100 Hz rep rate at 1.5 μs RF pulse length, and 70 MV/m peak on-axis field in the cavity. In this paper, we discuss the electromagnetic and engineering design of the cavity and provide the test results of the new gun.
DOI • reference for this paper ※  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THYYPLM3 High-Charge Injector for on-Axis Injection Into A High-Performance Storage Ring Light Source 3423
  • K.C. Harkay, I.A. Abid, T.G. Berenc, W. Berg, M. Borland, A.R. Brill, D.J. Bromberek, J.M. Byrd, J.R. Calvey, J. Carvelli, J.C. Dooling, L. Emery, T. Fors, G.I. Fystro, A. Goel, D. Hui, R.T. Keane, R. Laird, F. Lenkszus, R.R. Lindberg, T.J. Madden, B.J. Micklich, L.H. Morrison, S.J. Pasky, V. Sajaev, N. Sereno, H. Shang, T.L. Smith, J.B. Stevens, Y. Sun, G.J. Waldschmidt, J. Wang, U. Wienands, K.P. Wootton, A. Xiao, B.X. Yang, Y. Yang, C. Yao
    ANL, Argonne, Illinois, USA
  • A. Blednykh
    BNL, Upton, Long Island, New York, USA
  • A.H. Lumpkin
    Fermilab, Batavia, Illinois, USA
  Funding: Work supported by U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Next-generation, high-performance storage ring light sources based on multibend achromat optics will require on-axis injection because of the extremely small dynamic aperture. Injectors will need to supply full-current bunch replacement in the ring with high single-bunch charge for swap-out. For upgrades of existing light sources, such as the Advanced Photon Source Upgrade (APS-U), it is economical to retain the existing injector infrastructure and make appropriate improvements. The challenges to these improvements include achieving high single-bunch charge in the presence of instabilities, beam loading, charge stability and reliability. In this paper, we discuss the rationale for the injector upgrades chosen for APS-U, as well as backup and potential alternate schemes. To date, we have achieved single-bunch charge from the injectors that doubles the original design value, and have a goal to achieve about three times the original design value.
slides icon Slides THYYPLM3 [1.499 MB]  
DOI • reference for this paper ※  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)