Author: Brooks, S.J.
Paper Title Page
MOZZPLS1 eRHIC Design Overview 45
 
  • C. Montag, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, W. Guo, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, S. Verdú-Andrés, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, Long Island, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • Y. Hao
    FRIB, East Lansing, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC) is being envisioned as the next facility to be constructed by the DOE Nuclear Physics program. Brookhaven National Laboratory is proposing eRHIC, a facility based on the existing RHIC complex as a cost effective realization of the EIC project with a peak luminosity of 1034 cm-2 sec-1. An electron storage ring with an energy range from 5 to 18 GeV will be added in the existing RHIC tunnel. A spin-transparent rapid-cycling synchrotron (RCS) will serve as a full-energy polarized electron injector. Recent design improvements include reduction of the IR magnet strengths to avoid the necessity for Nb3Sn magnets, and a novel hadron injection scheme to maximize the integrated luminosity. We will provide an overview of this proposed project and present the current design status.
 
slides icon Slides MOZZPLS1 [5.428 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZZPLS1  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB076 CBETA Beam Commissioning Results 748
 
  • C.M. Gulliford, N. Banerjee, A.C. Bartnik, I.V. Bazarov, J.A. Crittenden, K.E. Deitrick, A. Galdi, G.H. Hoffstaetter, P. Quigley, K.W. Smolenski
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg, S.J. Brooks, R.J. Michnoff, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
 
  We report on the first results of commissioning CBETAwith a fully closed return loop. We repeat much of our early commissioning from the fractional arc test, namely setting up the injection system, calibrating the main linac, and steering the beam through the first splitter line. Most importantly, first results from sending the beam all the way through the FixedField Alternating gradient permanent magnet return arc are described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB076  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW102 CBETA - Novel Superconducting ERL 1651
 
  • R.J. Michnoff, J.S. Berg, S.J. Brooks, J. Cintorino, Y. Hao, C. Liu, G.J. Mahler, F. Méot, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, S. Trabocchi, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, H. Witte
    BNL, Upton, Long Island, New York, USA
  • N. Banerjee, J. Barley, A.C. Bartnik, I.V. Bazarov, D.C. Burke, J.A. Crittenden, L. Cultrera, J. Dobbins, S.J. Full, F. Furuta, R.E. Gallagher, M. Ge, C.M. Gulliford, B.K. Heltsley, G.H. Hoffstaetter, D. Jusic, R.P.K. Kaplan, V.O. Kostroun, Y. Li, M. Liepe, W. Lou, J.R. Patterson, P. Quigley, D.M. Sabol, D. Sagan, J. Sears, C.H. Shore, E.N. Smith, K.W. Smolenski, V. Veshcherevich, D. Widger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • M. Dunham, C.E. Mayes
    SLAC, Menlo Park, California, USA
 
  Funding: New York State Research&Development Authority - NYSERDA agreement number 102192
We are successfully commissioning a unique Cornell University and Brookhaven National Laboratory Electron Recovery Linac (ERL) Test Accelerator ’CBETA’ [1]. The ERL has four accelerating passes through the supercon-ducting linac with a single Fixed Field Alternating Linear Gradient (FFA-LG) return beam line built of the Halbach type permanent magnets. CBETA ERL accelerates elec-trons from 42 MeV to 150 MeV, with the 6 MeV injec-tor. The novelties are that four electron beams, with ener-gies of 42, 78, 114, and 150 MeV, are merged by spreader beam lines into a single arc FFA-LG beam line. The elec-tron beams from the Main Linac Cryomodule (MLC) pass through the FFA-LG arc and are adiabatically merged into a single straight line. From the straight section the beams are brought back to the MLC the same way. This is the first 4 pass superconducting ERL and the first single permanent magnet return line.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW102  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS088 CBETA Permanent Magnet Production Run 4318
 
  • S.J. Brooks, G.J. Mahler, R.J. Michnoff, J.E. Tuozzolo
    BNL, Upton, Long Island, New York, USA
 
  214 neodymium permanent magnets have been manufactured for the return loop of the CBETA multi-turn ERL being built at Cornell University. There are 5 types of quadrupole and combined-function gradient magnets using a variant of the circular Halbach design. These are made out of NdFeB material and glued into an aluminium housing with water channels for temperature stabilisation. The NdFeB wedges and magnet construction were done by outside companies, while the final "tuning" using inserts containing 64 iron wires per magnet was done at BNL over a period of about 6 months. Average relative field errors of 2.3·10-4 were achieved on the beam region. The magnet strengths vary by type but are of order 10T/m for quadrupole component and up to 0.3T for the dipole. This paper reports on the field quality and timeline achieved in this production process.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS088  
About • paper received ※ 11 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)