Author: Cao, J.S.
Paper Title Page
MOPRB027 Progress of HEPS Accelerator System Design 633
 
  • P. He, J.S. Cao, F.S. Chen, J. Chen, H. Dong, D.Y. He, Y. Jiao, W. Kang, C. H. Li, J.Y. Li, F. Long, H.H. Lu, X. Qi, Q. Qin, H. Qu, J.Q. Wang, G. Xu, J.H. Yue, J. Zhang, J.R. Zhang, P. Zhang
    IHEP, Beijing, People’s Republic of China
 
  The 4th generation ring-based light sources, HEPS (High Energy Photon Source) 7BA lattice has been de-veloped at IHEP. This is 6Gev, 200mA machine which has horizontal emittance Ɛh around 60pm.rad to gain the high brilliance photon beam. this compact lattice design bring so many engineering challenges for accelerator magnets, vacuum components, beam diagnotice, etc. This paper will present the noval lattice design and subsystem design progress.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB027  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW062 Synchrotron Light Diagnostic Beamline Design for HEPS Storage Ring 2619
 
  • D.C. Zhu, J.S. Cao, Y.F. Sui, J.H. Yue
    IHEP, People’s Republic of China
 
  Funding: National Nature Science Foundation of China(11605213)
High Energy Photon Source (HEPS) is a 6 GeV ul-tralow-emittance storage ring light source to be built in Beijing, China. With a multiple-bend achromat lattice design, the storage ring is expected to achieve an ul-tralow emittance of 34 pm.rad. The horizontal and verti-cal beam sizes will be in the sub-10 μm level. Beam emit-tance will be measured with x-ray diagnostic beamline at a low dispersion bending magnet source point. A visible light beamline will be designed to measure the bunch length and purity. In this paper, we will introduce the x-ray beamline, which combine with different techniques to resolve beam sizes and emittance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW062  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB062 New Orbit Correction Method Based on SVDC Algorithm for Ring Based Light Sources 3943
 
  • X.Y. Huang, J.S. Cao, Y.Y. Du, Y.H. Lu, H.Z. Ma, Y.F. Ma, Y.F. Sui, S.J. Wei, Y. Wei, Q. Ye, X.E. Zhang, D.C. Zhu
    IHEP, Beijing, People’s Republic of China
 
  Funding: Union Foundation of excellent post-doctoral of China
Orbit feedback system is essential for realizing the exceeding beam stability in modern ring based light sources. Most advanced light sources adopt the global correction scheme by using singular value decomposition (SVD) algorithm. In this paper, a new SVD with constraints method (SVDC) is proposed to correct the global and local orbit simultaneously. Numerical simulations are presented with the case of High Energy Light Source (HEPS) by comparing classic algorithms. The results show that SVDC is very effective for orbit correction and very easy to implement.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB062  
About • paper received ※ 09 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)