Author: Caracappa, A.
Paper Title Page
THPRB104 Improvements in Long-Term Orbit Stability at NSLS-II 4070
  • Y. Hidaka, A. Caracappa, Y. Hu, B. Podobedov, R.M. Smith, Y. Tian, G.M. Wang
    BNL, Upton, Long Island, New York, USA
  Funding: The study is supported by U.S. DOE under Contract No. DE-SC0012704.
We report our latest efforts to further improve long-term orbit stability at NSLS-II, on top of what is already provided by fast orbit feedback (FOFB) system. A DC local bump generation program, only utilizing RF beam position monitors (BPM) and compatible with FOFB, was first implemented and deployed in operation successfully, allowing on-demand fine adjustments of beamline source positions and angles. Then we introduced a simple feedback version that performs these bump corrections automatically as needed to maintain the sources within in 1 um/urad for select beamlines. In addition, an RF frequency feedback was also implemented to improve stability for 3-pole wigglers and bending magnet users. As a parallel effort, X-ray BPMs were included in a local feedback system to stabilize photon beam motion for several ID beamlines. However, this feedback scheme is not transparent to FOFB, and suspected to be the source of occasional saturation of fast corrector strength. As an alternative solution, the local bump program and its feedback version has been recently upgraded to include bumps with X-ray BPMs and in operation since April 2019.
DOI • reference for this paper ※  
About • paper received ※ 19 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)