Author: Chehab, R.
Paper Title Page
MOZZPLS2 Positron Driven Muon Source for a Muon Collider: Recent Developments 49
  • M.E. Biagini, M. Antonelli, O.R. Blanco-García, M. Boscolo, A. Ciarma, A. Giribono, S. Guiducci, C. Vaccarezza, A. Variola
    INFN/LNF, Frascati, Italy
  • A. Bacci
    INFN-Milano, Milano, Italy
  • M. Bauce, F. Collamati
    INFN-Roma1, Rome, Italy
  • G. Cesarini
    INFN-Roma, Roma, Italy
  • I. Chaikovska, R. Chehab
    LAL, Orsay, France
  • S.M. Liuzzo, P. Raimondi
    ESRF, Grenoble, France
  • D. Lucchesi
    Univ. degli Studi di Padova, Padova, Italy
  • N. Pastrone
    INFN-Torino, Torino, Italy
  The design of a future multi-TeV muon collider needs new ideas to overcome the technological challenges related to muon production, cooling, accumulation and acceleration. The Low Emittance Muon Accelerator (LEMMA) concept *,** presents in this paper an upgraded layout of a positron driven muon source. The positron beam, stored in a ring with high energy acceptance and low emittance, is extracted and driven in a push-pull configuration to a multi-target system, to produce muon pairs at threshold on the target’s electrons. This solution alleviates the issues related to the power deposited and the integrated Peak Energy Density Deposition on the targets. Muons produced in the multi-target system will then be accumulated in many parallel rings before acceleration and injection in the collider. A special multi-target line lattice has been designed to cope with the focusing of both the positron and muon beams. Studies on the number, material and thickness of the targets have been carried out. A general layout of the overall scheme and a description is presented, as well as plans for future R&D.
* M. Antonelli, P. Raimondi, INFN-13-22/LNF, 2013
** M. Boscolo, M. Antonelli, O.R. Blanco-Garcia, S. Guiducci, S. Liuzzo, P. Raimondi, F. Collamati, Phys. Rev. Accel. Beams, vol. 21, p. 061005, 2018
slides icon Slides MOZZPLS2 [4.360 MB]  
DOI • reference for this paper ※  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPMP002 Linac and Damping Ring Designs for the FCC-ee 420
  • S. Ogur, K. Oide, Y. Papaphilippou, L. Rinolfi, F. Zimmermann
    CERN, Geneva, Switzerland
  • A.M. Barnyakov, A.E. Levichev, P.V. Martyshkin, D.A. Nikiforov
    BINP SB RAS, Novosibirsk, Russia
  • I. Chaikovska, R. Chehab
    LAL, Orsay, France
  • K. Furukawa, N. Iida, T. Kamitani, F. Miyahara, K. Oide
    KEK, Ibaraki, Japan
  • E.V. Ozcan
    Bogazici University, Bebek / Istanbul, Turkey
  • S.M. Polozov
    MEPhI, Moscow, Russia
  • L. Rinolfi
    ESI, Archamps, France
  • F. Yaman
    IZTECH, Izmir, Turkey
  We report the design of the pre-injector chain for the Future Circular e+ e Collider (FCC-ee) system. The electron beam from a low-emittance RF gun is accelerated by an S-band linac up to 6 GeV. A damping ring at 1.54 GeV is required for emittance cooling of the positron beam. The intermediate energy step from the exit of the S-band linac at 6 GeV to the 20 GeV injection energy of the top-up booster can be provided by the modified Super Proton Synchrotron (SPS), serving as a pre-booster ring (PBR). An alternative option to reach 20 GeV energy would be to extend the S-band linac with a C- or X-band linac. An overall cost optimisation will determine the choice of the final configuration. Beam loss and emittance dilution in the linac due to space charge effects, wakefields, and misalignment of accelerator components can be mitigated by RF phasing and orbit steering. Start-to-end simulations examine the beam transport through the linac up to either 6 GeV or 20 GeV. The results indicate large design margins. Simulations of the beam dynamics in the damping ring (DR) demonstrate a sufficiently large momentum acceptance. Effects of intrabeam scattering and electron cloud instability in the DR are also studied.  
DOI • reference for this paper ※  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPMP003 Positron Source for FCC-ee 424
  • I. Chaikovska, R. Chehab, A. Faus-Golfe, Y. Han
    LAL, Orsay, France
  • A. Apyan
    ANSL, Yerevan, Armenia
  • Y. Enomoto, K. Furukawa, T. Kamitani, F. Miyahara, M. Satoh, Y. Seimiya, T. Suwada
    KEK, Ibaraki, Japan
  • P.V. Martyshkin
    BINP SB RAS, Novosibirsk, Russia
  • S. Ogur, K. Oide, Y. Papaphilippou, L. Rinolfi, P. Sievers, F. Zimmermann
    CERN, Meyrin, Switzerland
  The FCC-ee is a high-luminosity, high-precision circular collider to be constructed in a new 100 km tunnel in the Geneva area. The physics case is well established and the FCC-ee operation is foreseen at 91 GeV (Z-pole), 160 GeV (W pair production threshold), 240 GeV (Higgs resonance) and 365 GeV (t-tbar threshold). Due to the large 6D production emittance and important thermal load in the production target, the positron injector, in particular the positron source, is one of the key elements of the FCC-ee, requiring special attention. To ensure high reliability of the positron source, conventional and hybrid targets are currently under study. The final choice of the positron target will be made based on the estimated performances. In this framework, we present a preliminary design of the FCC-ee positron source, with detailed simulation studies of positron production, capture and primary acceleration.  
DOI • reference for this paper ※  
About • paper received ※ 03 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)