Author: Chen, J.
Paper Title Page
MOPRB027 Progress of HEPS Accelerator System Design 633
 
  • P. He, J.S. Cao, F.S. Chen, J. Chen, H. Dong, D.Y. He, Y. Jiao, W. Kang, C. H. Li, J.Y. Li, F. Long, H.H. Lu, X. Qi, Q. Qin, H. Qu, J.Q. Wang, G. Xu, J.H. Yue, J. Zhang, J.R. Zhang, P. Zhang
    IHEP, Beijing, People’s Republic of China
 
  The 4th generation ring-based light sources, HEPS (High Energy Photon Source) 7BA lattice has been de-veloped at IHEP. This is 6Gev, 200mA machine which has horizontal emittance Ɛh around 60pm.rad to gain the high brilliance photon beam. this compact lattice design bring so many engineering challenges for accelerator magnets, vacuum components, beam diagnotice, etc. This paper will present the noval lattice design and subsystem design progress.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB027  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW048 Simulation of Injection Efficiency for the High Energy Photon Source 1514
 
  • Z. Duan, J. Chen, Y.Y. Guo, D. Ji, Y. Jiao, C. Meng, Y.M. Peng, Xu. Xu
    IHEP, Beijing, People’s Republic of China
 
  Funding: Work supported by Natural Science Foundation of China (No.11605212).
A ’high-energy accumulation’ scheme [1] was proposed to deliver the full charge bunches for the swap-out injec- tion of the High Energy Photon Source. In this scheme, the depleted storage ring bunches are recovered via merging with small charge bunches in the booster, before being refilled into the storage ring. In particular, the high charge bunches are transferred twice between the storage ring and the booster, and thus it is essential to maintain a near per- fect transmission efficiency in the whole process. In this paper, major error effects affecting the transmission efficiency are analyzed and their tolerances are summarized, injection simulations indicate a satisfactory transmission efficiency is achievable for the present baseline lattice.
* Z. Duan, et al., "The swap-out injection scheme for the High Energy Photon Source", Proc. IPAC’18, THPMF052
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW048  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP018 A Novel Non-Linear Strip-Line Kicker Driven by Fast Pulser in Common Mode 2345
 
  • J. Chen, Z. Duan, L. Huo, Y. Li, H. Shi, G. Wang, L. Wang, N. Wang
    IHEP, Beijing, People’s Republic of China
 
  The next generation storage ring-based light sources adopt multi-bend achromat lattices to achieve a low emittance. The dynamic apertures of these machines are usually less than 10 mm so that the traditional pulsed local bump injection is difficult to achieve. Off-axis injection with a pulsed multipole or a non-linear kicker could be a viable solution which requires a moderate dynamic aperture of a few mm. In this paper, a novel non-linear kicker design is presented. Unlike pulsed sextupole or nonlinear kicker magnet, the nonlinear kicker we proposed is a traveling wave kicker with 2 strip-line electrodes driven by a nanosecond-level fast pulser in common mode. The disturbance to the stored beam is minimal since the perturbation is limited to the target bunch alone.
Work support by NSFC(11475200 and 11675194).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP018  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB026 A 300 mm Long Prototype Strip-Line Kicker for the Heps Injection System 3864
 
  • L. Wang, J. Chen, L. Huo, P. Liu, H. Shi, X.L. Shi, G. Wang, N. Wang
    IHEP, Beijing, People’s Republic of China
 
  In the High Energy Photon Source (HEPS), the dynamic aperture of machine is not large enough for off-axis injec-tion for its baseline 7BA lattice design. So, a group of superfast kickers with about 12 ns pulse bottom width are needed for on-axis swap out injection scheme. The design about a couple sets of 300 mm long strip-line kickers is presented. Five kickers as a module are placed in a stain-less steel vacuum vessel to solve the problem of longitu-dinal space restriction in injection area. So far, the proto-type development of strip-line kicker was completed. The results of time-domain reflectometer (TDR) test and high voltage pulse test show that the strip-line kicker can meet the requirement of the HEPS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB026  
About • paper received ※ 06 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)