Author: Chritin, N.
Paper Title Page
WEPGW084 Measuring Beamsize with the LHC Beam Gas Vertex Detector 2680
SUSPFO109   use link to see paper's listing under its alternate paper code  
  • B. Würkner, A. Alexopoulos, C. Barschel, E. Bravin, G. Bregliozzi, N. Chritin, B. Dehning, M. Ferro-Luzzi, M. Giovannozzi, R. Jacobsson, L.K. Jensen, O.R. Jones, V. Kain, R. Kieffer, R. Matev, M.N. Rihl, V. Salustino Guimaraes, R. Veness, S. Vlachos
    CERN, Meyrin, Switzerland
  • A. Bay, F. Blanc, S. Gianì, O. Girard, G.J. Haefeli, P. Hopchev, A. Kuonen, T. Nakada, O. Schneider, M. Tobin, Z. Xu
    EPFL, Lausanne, Switzerland
  • R. Greim, T. Kirn, S. Schael, M. Wlochal
    RWTH, Aachen, Germany
  The Beam Gas Vertex detector (BGV) is an innovative beam profile monitor being developed as part of the High Luminosity LHC (HL-LHC) project at CERN. The goal is to continually measure the transverse beam size by reconstructing beam-gas interaction vertices using high precision tracking detectors. To confirm the feasibility of such a device, a demonstrator based on eight modules of scintillating fiber detectors has been constructed, installed in the LHC and operated for the past 3 years. It will be shown that using the BGV the average transverse beam size can be obtained with a statistical accuracy of better than 5µm (for a gaussian beam with a σ of 200µm). This precision is obtained with an integration time of less than one minute. In addition, the BGV measures the size of individual bunches with a statistical accuracy of better than 5% within 5 minutes. The results obtained from all the data gathered over the past 3 years will be presented and compared to measurements from other beam profile monitors. Some ideas for improvements for the final HL-LHC instrument will also be discussed.  
DOI • reference for this paper ※  
About • paper received ※ 10 May 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPGW093 Commissioning of the Prototype for a New Gas Curtain Beam Profile Monitor Using Beam Induced Fluorescence for HL-LHC 2709
  • A. Salehilashkajani, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • M. Ady, N. Chritin, J. Glutting, O.R. Jones, R. Kersevan, T. Marriott-Dodington, S. Mazzoni, A. Rossi, G. Schneider, R. Veness
    CERN, Meyrin, Switzerland
  • P. Forck, S. Udrea
    GSI, Darmstadt, Germany
  • C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  Funding: This work is supported by the HLLHCUK project and the STFC Cockcroft Institute core grant No. ST/G008248/1.
A new supersonic gas-jet curtain based beam profile monitor is under development for minimally invasive simultaneous transverse profile diagnostics of proton and electron beams, at pressures compatible with LHC. The monitor makes use of a thin gas-jet curtain angled at 45 degrees with respect to the charged particle beams. The fluorescence caused by the interaction between the curtain and the beam can then be detected using a dedicated imaging system to determine its transverse profile. This contribution details design features of the monitor, discusses the gas-jet curtain formation and presents various experimental tests, including profile measurements of an electron beam using nitrogen and neon curtains. The gas-jet density was estimated by correlating it with the number of photons detected by the camera. These measurements are then compared with results obtained using a movable pressure gauge. This monitor has been commissioned in collaboration with CERN, GSI and the University of Liverpool. It serves as a first prototype of a final design that will be placed in the LHC beam line to measure the profile of the proton beam.
DOI • reference for this paper ※  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPGW054 Generation and Delivery of an Ultraviolet Laser Beam for the RF-Photoinjector of the Awake Electron Beam 3709
  • V. Fedosseev, F. Batsch, C. Capelli, E. Chevallay, N. Chritin, S. Döbert, T. Feniet, F. Friebel, P. Gander, E. Granados, E. Gschwendtner, J. Hansen, C. Heßler, H. Panuganti, K.A. Szczurek
    CERN, Meyrin, Switzerland
  • M. Hüther, M. Martyanov, J.T. Moody, P. Muggli
    MPI-P, München, Germany
  In the AWAKE experiment, the electron beam is used to probe the proton-driven wakefield acceleration in a 10 m long rubidium vapor source. Electron bunches are produced using an RF-gun equipped with a Cs2Te photocathode illuminated by an ultraviolet (UV) laser pulse. To generate the UV laser beam a fraction of the infrared (IR) laser beam used for ionization of rubidium is extracted from the laser system, time-compressed to a picosecond scale and frequency tripled using nonlinear crystals. The transport line of the laser beam over the 20 m distance was built using rigid supports for mirrors and air-evacuated tube to prevent any possible beam pointing instabilities due to vibrations and air convection. Construction of the UV beam optical system enables appropriate beam shaping and control of its size and position on the cathode, as well as time delay with respect to the IR pulse, i.e. with respect to the plasma wakefield seeder. In this paper, we present the design of the UV beam line and results of its commissioning regarding IR/UV conversion, beam pointing stability, and means of beam control and monitoring.  
DOI • reference for this paper ※  
About • paper received ※ 14 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)