Author: Danzeca, S.
Paper Title Page
THPTS067 Characterisation of the Radiation Hardness of Cryogenic Bypass Diodes for the HL-LHC Inner Triplet Quadrupole Circuit 4268
  • D. Wollmann, C. Cangialosi, C. Cangialosi, F. Cerutti, G. D’Angelo, S. Danzeca, R. Denz, M. Favre, R. Garcia Alia, D. Hagedorn, A. Infantino, G. Kirby, L. Kistrup, T. Koettig, J. Lendaro, B. Lindstrom, A. Monteuuis, F. Rodriguez-Mateos, A.P. Siemko, K. Stachon, A. Tsinganis, M. Valette, A.P. Verweij, A. Will
    CERN, Geneva, Switzerland
  • A. Bernhard, A.-S. Müller
    KIT, Karlsruhe, Germany
  Funding: Work supported by the HL-LHC Project.
The powering layout of the new HL-LHC Nb3Sn triplet circuits is the use of cryogenic bypass diodes, where the diodes are located inside an extension to the magnet cryostat, operated in superfluid helium and exposed to radiation. Therefore, the radiation hardness of different type of bypass diodes has been tested at low temperatures in CERN’s CHARM irradiation facility during the operational year 2018. The forward characteristics, the turn on voltage and the reverse blocking voltage of each diode were measured weekly at 4.2 K and 77 K, respectively, as a function of the accumulated radiation dose. The diodes were submitted to a dose close to 12 kGy and a 1 MeV equivalent neutron fluence of 2.2x1014,n/cm2. After the end of the irradiation campaign the annealing behaviour of the diodes was tested by increasing the temperature slowly to 300 K. This paper describes the experimental setup, the measurement procedure and discusses the results of the measurements.
DOI • reference for this paper ※  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)