Author: De Matteis, E.
Paper Title Page
THPTS036 Quench Detection and Diagnostic Systems for the Superconducting Circuits for the HL-LHC 4183
  • R. Denz, D.O. Calcoen, E. De Matteis, V. Froidbise, S. Georgakakis, S. Haas, S. Mundra, T. Podzorny, A.P. Siemko, J. Spasic, J. Steckert
    CERN, Geneva, Switzerland
  • D. Blasco Serrano
    CIEMAT, Madrid, Spain
  The High Luminosity LHC project (HL-LHC) will incorporate a new generation of superconducting elements such as high field superconducting magnets based on Nb3Sn conductors and MgB2 based high temperature superconducting links for magnet powering. In addition, the HL-LHC will also feature new generations of NbTi based magnets. The proper protection and diagnostics of those elements require the development of a new generation of integrated quench detection and data acquisition systems as well as novel methods for quench detection. The next generation of quench detection systems is to a large extent software defined and serves at the same time as high performance data acquisition system. The contribution will discuss the specific needs of HL-LHC in terms of quench detection and present recent results from tests with prototype magnets. The contribution will show the implementation of new quench detection methods such as current derivative sensors. Measures for increasing the system dependability and easing its maintenance will be explained, as well as the improved supervision architecture using Ethernet based field-bus systems for fast data transmission.  
DOI • reference for this paper ※  
About • paper received ※ 07 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)