Author: Dorda, U.
Paper Title Page
MOPGW027 Design Considerations for Permenant Magnetic Quadrupole Triplet for Matching Into Laser Driven Wake Field Acceleration Experiment at SINBAD 143
 
  • S. Yamin, R.W. Aßmann, U. Dorda, F. Lemery, B. Marchetti, E. Panofski, P.A. Walker
    DESY, Hamburg, Germany
 
  SINBAD (Short and INnovative Bunches and Accelerators at DESY) facility aims to produce ultrashort bunches (sub-fs) at ~100 MeV, suitable for injection into novel accelerators e.g. dielectric Laser acceleration (DLA) and Laser Driven Wakefield acceleration (LWFA). The LWFA experiment demands β functions to be of the order of 1 mm to reduce energy spreads and emittance growth from nonlinearities. Matching such a space charge dominated beam to such constraints with conventional electromagnets is challenging. A Permanent Magnetic Quadrupole (PMQ) triplet is one promising focusing strategy. In this paper, we investigate the performance of a PMQ triplet to fit the requirements of the electron beam properties in a plasma cell and discuss the realizable phase spaces for the LWFA experiment planned at SINBAD.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW027  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS014 The Experimental Area at the ARES LINAC 867
 
  • F. Burkart, R.W. Aßmann, U. Dorda, J. Hauser, S. Lederer, F. Lemery, B. Marchetti, F. Mayet, E. Panofski, P. Wiesener
    DESY, Hamburg, Germany
  • M. Trunk
    University of Hamburg, Hamburg, Germany
 
  The ARES (Accelerator Research Experiment at SINBAD) linac at the accelerator R&D facility SINBAD (Short innovative bunches and accelerators at DESY) will drive multiple independent experiments including the acceleration of ultrashort electron bunches. In addition the linac will host an experimental area, open for transnational access, to study advanced high gradient, laser driven, acceleration concepts, like the ones studied within the ACHIP (accelerator on a chip) project. The area will be operational mid-2019. This paper will report on the current status of the experimental area, including hardware parameters, beam optics, achievable beam parameters, design of the experimental chamber and commissioning plans. The modification plans for a micro-bunching experiment in the frame of the ACHIP experiment and future upgrade plans will be shown and discussed in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS014  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS025 Overview of the ARES Bunch Compressor at SINBAD 902
 
  • F. Lemery
    University of Hamburg, Hamburg, Germany
  • R.W. Aßmann, U. Dorda, K. Flöttmann, J. Hauser, M. Hüning, G. Kube, M. Lantschner, S. Lederer, B. Marchetti, N. Mildner, M. Pelzer, M. Rosan, J. Tiessen, K. Wittenburg
    DESY, Hamburg, Germany
 
  Funding: This project has received funding from the European Unions Horizon 2020 Research and Innovation programme under Grant Agreement No 730871.
Bunch compressors are essential for the generation of short bunches with applications in e.g. colliders, free electron lasers, and advanced accelerator concepts. The up-and-coming ARES accelerator located at SINBAD, DESY will support the formation of ~100~MeV, pC, sub-fs electron bunches for LWFA research and development. We give an overview on the ARES bunch compressor, providing start-to-end simulations of the machine and an update on its technical design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS025  
About • paper received ※ 17 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS026 Status Report of the SINBAD-ARES RF Photoinjector and LINAC Commissioning 906
 
  • E. Panofski, R.W. Aßmann, F. Burkart, U. Dorda, K. Flöttmann, M. Hüning, B. Marchetti, D. Marx, F. Mayet, P.A. Walker, S. Yamin
    DESY, Hamburg, Germany
 
  The accelerator R&D facility SINBAD (Short innovative bunches and accelerators at DESY) will drive multiple independent experiments including the acceleration of ultrashort electron bunches and the test of advanced high gradient acceleration concepts. The SINBAD-ARES (Accelerator Research Experiment at SINBAD) setup hosts a normal conducting RF photoinjector generating a low charge electron beam that is afterwards accelerated to 100 MeV by an S-band linac section. The linac as well as a magnetic chicane allow the production of ultrashort pulses with an excellent arrival-time stability. The high brightness beam has then the potential to serve as a test beam for next generation compact acceleration schemes. The setup of the SINBAD-ARES facility will proceed in stages. We report on the current status of the ARES RF gun and linac commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS026  
About • paper received ※ 22 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZZPLS2 EuPRAXIA, a Step Toward a Plasma-Wakefield Based Accelerator With High Beam Quality 2291
 
  • P.A.P. Nghiem, A. Chancé
    CEA-IRFU, Gif-sur-Yvette, France
  • D. Alesini, E. Chiadroni, M. Croia, A. Del Dotto, M. Ferrario, A. Giribono, R. Pompili, S. Romeo, V. Shpakov, A. Stella, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • A. Aschikhin, R.W. Aßmann, U. Dorda, A. Ferran Pousa, V. Libov, B. Marchetti, A. Martinez de la Ossa, D. Marx, P. Niknejadi, L. Schaper, E.N. Svystun, P.A. Walker, M.K. Weikum, J. Zhu
    DESY, Hamburg, Germany
  • T. Audet, B. Cros, P. Lee, G. Maynard
    CNRS LPGP Univ Paris Sud, Orsay, France
  • A. Beck, F. Massimo, A. Specka
    LLR, Palaiseau, France
  • M. Chen, S.M. Weng
    Shanghai Jiao Tong University, Shanghai, People’s Republic of China
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • J.A. Clarke
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M.-E. Couprie, A. Ghaith, D. Oumbarek Espinos
    SOLEIL, Gif-sur-Yvette, France
  • G. Dattoli, F. Nguyen
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • N. Delerue
    LAL, Orsay, France
  • R.A. Fonseca, L.O. Silva
    Instituto Superior Tecnico, Lisbon, Portugal
  • L.A. Gizzi, G. Toci, P. Tomassini
    INO-CNR, Pisa, Italy
  • A. Helm
    IST-UTL, Lisbon, Portugal
  • B. Hidding
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • S.M. Hooker, R. Walczak
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • M.G. Ibison, M. Vujanovic, C.P. Welsch, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • D.A. Jaroszynski, F.Y. Li, Z.M. Sheng, S.M. Wiggins, S. Yoffe
    USTRAT/SUPA, Glasgow, United Kingdom
  • K.O. Kruchinin, A.Y. Molodozhentsev
    ELI-BEAMS, Prague, Czech Republic
  • L. Labate
    CNR/IPP, Pisa, Italy
  • X. Li
    DESY Zeuthen, Zeuthen, Germany
  • F. Mathieu
    LULI, Palaiseau, France
  • Z. Mazzotta
    Ecole Polytechnique, Palaiseau, France
  • T.J. Mehrling
    LBNL, Berkeley, USA
  • A. Mosnier, C. Simon
    CEA, Gif-sur-Yvette, France
  • A. Mostacci
    Rome University La Sapienza, Roma, Italy
  • Z. Najmudin
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • R. Pattathil, D. Symes
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • A.R. Rossi
    INFN-Milano, Milano, Italy
  • T. Silva, J.M. Vieira
    IPFN, Lisbon, Portugal
  • M.J.V. Streeter
    JAI, London, United Kingdom
  • D. Terzani
    UniNa, Napoli, Italy
 
  Funding: European Union’s Horizon 2020 research and innovation programme under grant agreement No. 653782
The EuPRAXIA project aims at designing the world’s first accelerator based on plasma-wakefield advanced technique, which can deliver a 5 GeV electron beam with simultaneously high charge, low emittance and low energy spread to user’s communities. Such challenging objectives can only have a chance to be achieved when particular efforts are dedicated to identify the subsequent issues and to find the way to solve them. Many injection/acceleration schemes and techniques have been explored by means of thorough simulations in more than ten European institutes to sort out the most appropriate ones. The specific issues of high charge, high beam quality and beam extraction then transfer to the user’s applications, have been tackled with many innovative approaches*. This article highlights the different advanced methods that have been employed by the EuPRAXIA collaboration and the preliminary results obtained. The needs in terms of laser and plasma parameters for such an accelerator are also summarized.
*- in 2017: Phys. Plasmas, 24,10,103120; Nat. Commun.8,15705; - in 2018: NIMA, 909,84-89; NIMA, 909,49-53; Phys. Rev.Acc. Beams, 21,111301; NIMA, 909,54-57; Phys. Rev.Acc. Beams, 21,052802; NIMA, 909,282-285
 
slides icon Slides WEZZPLS2 [5.157 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEZZPLS2  
About • paper received ※ 12 April 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW011 Development of a Silicon Strip Detector for Novel Accelerators at Sinbad 2487
 
  • S. Jaster-Merz, R.W. Aßmann, F. Burkart, U. Dorda, U. Kraemer, E. Panofski, M. Stanitzki
    DESY, Hamburg, Germany
 
  At the SINBAD facility (DESY Hamburg), novel particle acceleration techniques like dielectric laser acceleration (DLA) structures will be tested using the ARES linac. Due to the small size of these structures, the accelerated electron beams only have a very low (sub-pC) charge. To determine the energy distribution of these beams, a silicon strip detector for the ARES linac spectrometer is currently under development. This detector fulfils the requirements of high spatial resolution for low charge density beams. The detector consists of two 1 cm x 1 cm silicon strip sensors and readout components. The design of the detector, its components and an estimate of its behaviour for a specific electron beam distribution are presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW011  
About • paper received ※ 17 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW011 Commissioning-Stages and Radio-Protection Concept for the THz-Linac Based Accelerator "AXSIS" at DESY 3598
 
  • F. Burkart, R.W. Aßmann, U. Dorda, B. Marchetti
    DESY, Hamburg, Germany
  • F.X. Kärtner, N.H. Matlis, T. Rohwer
    CFEL, Hamburg, Germany
 
  The dedicated accelerator R&D facility SINBAD at DESY hosts the AXSIS accelerator. This project is funded by the European Research Council to develop a compact source for attosecond serial X-ray crystallography and spectroscopy. For that purpose, in one of the arcs of the SINBAD facility and the neighboring laser labs, an accelerator research site is being constructed where a fully THz-driven accelerator (electron gun and linac, < 30MeV) will be installed. The current status of the hardware installation of the electron beam accelerator is presented. Furthermore, the required radio-protection measures and maximum beam parameters are presented. In this contribution the commissioning plans and the staging of the beam operation for the accelerator complex will be shown and discussed in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW011  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW014 Tolerance Studies and Limitations for Photonic Bandgap Fiber Accelerators 3605
 
  • L. Genovese, R.W. Aßmann, U. Dorda, M. Kellermeier, W. Kuropka, F. Lemery, F. Mayet
    DESY, Hamburg, Germany
  • W. Kuropka, F. Mayet
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Laser-driven hollow core photonic bandgap (PBG) fibers were proposed by Lin in 2001 as high-gradient accelerators. The central defect in the transversely periodic lattice supports an accelerating mode for synchronous acceleration in the ultra-relativistic regime. The optical frequencies in such dielectric laser accelerators motivate a sensitivity and tolerance study to overcome manufacturing imperfections. Finally we discuss the propagation characteristics of Lin-fibers and find that small-bandwidth (~ns) pulses would be needed for efficient acceleration over longer distances.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW014  
About • paper received ※ 16 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW015 Proposed Beam Test of a Transverse Gradient Undulator at the SINBAD Facility at DESY 3609
 
  • R. Rossmanith, A. Bernhard, K. Damminsek, J. Gethmann, S. Richter
    KIT, Karlsruhe, Germany
  • R.W. Aßmann, F. Burkart, U. Dorda, F. Jafarinia, B. Marchetti
    DESY, Hamburg, Germany
  • M. Kaluza
    IOQ, Jena, Germany
 
  While Laser Plasma Accelerators produce beams with the high output energy required for FELs, up to now the relatively high energy spread has prohibited FEL lasing. Therefore it was proposed to replace the normal FEL undulators by Transverse Gradient Undulators (TGUs). For a first, small scale test of the TGU concept, a 40 period prototype high gradient superconductive TGU was built at KIT and will be tested with beam at the ARES-linac in the new accelerator test facility SINBAD (Short Innovative Bunches and Accelerators at Desy) at DESY. The proposed tests are summarized in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW015  
About • paper received ※ 07 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW022 The Effect of the Transverse Beam Jitter on the Accelerated Electron Beam Quality in a Laser-Driven Plasma Accelerator with External Injection at SINBAD for ATHENAe 3624
 
  • E.N. Svystun, R.W. Aßmann, U. Dorda, B. Marchetti
    DESY, Hamburg, Germany
 
  Laser plasma accelerators with external injection of an RF-generated electron beam, providing high accelerating field gradients and increased control over the electron beam injection process, are promising candidates for production electron beams matching the requirements of modern user-applications. The experiments are planned at the SINBAD (Short INnovative Bunches and Accelerators at DESY) facility to test this acceleration technique in the context of the ATHENAe (Accelerator Technology HElmholtz iNfrAstructure) project. In this paper we present numerical studies on the effect of the transverse electron beam jitter on the final quality of a sub-femtosecond, 0.75 pC, 100 MeV electron beam accelerated to 1 GeV energy in the plasma wakefield driven by a 196 TW, 5 J laser pulse.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW022  
About • paper received ※ 07 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW023 Numerical Studies on Electron Beam Quality Optimization in a Laser-Driven Plasma Accelerator with External Injection at SINBAD for ATHENAe 3628
 
  • E.N. Svystun, R.W. Aßmann, U. Dorda, B. Marchetti, A. Martinez de la Ossa
    DESY, Hamburg, Germany
 
  Nowadays the electron beams produced in plasma-based accelerators (PBAs) are of sufficient energy for multi-GeV applications. However, to allow PBAs to be usable for demanding applications such as Free-Electron Lasers, the quality and stability of plasma-accelerated beams have to be improved. We present numerical studies on accelera-tion of an RF-generated electron beam with a charge of 0.8 pC and initial mean energy of 100 MeV to GeV energies by a laser-plasma accelerator. This acceleration scheme is planned to be tested experimentally within the framework of the ATHENAe (Accelerator Technology HElmholtz iNfrAstructure) project at the SINBAD (Short INnovative Bunches and Accelerators at DESY) facility at DESY, Hamburg. Electron beam injection, acceleration and extraction from the plasma are investigated through start-to-end 3D simulations. The effect of the injection phase on the accelerated beam quality is investigated through tolerance studies on the arrival-time jitter between the electron beam and the external laser.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW023  
About • paper received ※ 01 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW025 Facility Considerations for a European Plasma Accelerator Infrastructure (EuPRAXIA) 3635
 
  • P.A. Walker, R.W. Aßmann, U. Dorda, B. Marchetti, M.K. Weikum
    DESY, Hamburg, Germany
  • E. Chiadroni, M. Ferrario
    INFN/LNF, Frascati, Italy
  • A. Specka
    LLR, Palaiseau, France
  • R. Walczak
    JAI, Oxford, United Kingdom
 
  Funding: This work was supported by the European Union‘s Horizon 2020 research and innovation programme under grant agreement No. 653782.
EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is a conceptual design study for a compact European infrastructure with multi-GeV electron beams based on plasma accelerators. The concept foresees two main experimental sites, one at INFN in Frascati and one at DESY in Hamburg. In Frascati, an RF injector based on S-band and X-band technology (electron energy up to 1 GeV) will be constructed and used as a drive beam for beam driven plasma acceleration (PWFA) with final electron beam energies up to 5 GeV. At DESY, the focus will be on laser driven plasma acceleration (LWFA) and an RF injector based on S-band technology (electron energy up to 240 MeV) or alternatively a plasma injector (electron energy up to 150 MeV) can be used before the beam is injected into the plasma accelerator for external LWFA and acceleration up to 5 GeV. A single stage approach based on LWFA with internal injection will also be pursued in a second beamline. User areas at both sites will provide access to FEL pilot experiments, positron generation, compact radiation sources, and test beams for HEP detector development. This contribution discusses facility space considerations for the future plasma accelerator research infrastructure of EuPRAXIA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW025  
About • paper received ※ 13 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW026 Status of the Horizon 2020 EuPRAXIA Conceptual Design Study 3638
 
  • M.K. Weikum, A. Aschikhin, R.W. Aßmann, R. Brinkmann, U. Dorda, A. Ferran Pousa, T. Heinemann, F. Jafarinia, A. Knetsch, C. Lechner, W. Leemans, B. Marchetti, A. Martinez de la Ossa, P. Niknejadi, J. Osterhoff, K. Poder, R. Rossmanith, L. Schaper, E.N. Svystun, G.E. Tauscher, P.A. Walker, J. Zhu
    DESY, Hamburg, Germany
  • T. Akhter, S. De Nicola
    INFN-Napoli, Napoli, Italy
  • D. Alesini, M.P. Anania, F.G. Bisesto, E. Chiadroni, M. Croia, A. Del Dotto, M. Ferrario, F. Filippi, A. Gallo, A. Giribono, R. Pompili, S. Romeo, J. Scifo, C. Vaccarezza, F. Villa
    INFN/LNF, Frascati, Italy
  • A.S. Alexandrova, R. Torres, C.P. Welsch, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • A.S. Alexandrova, A. Beaton, J.A. Clarke, A.F. Habib, T. Heinemann, B. Hidding, P. Scherkl, N. Thompson, R. Torres, D. Ullmann, C.P. Welsch, S.M. Wiggins, J. Wolfenden, G.X. Xia
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N.E. Andreev, D. Pugacheva
    JIHT RAS, Moscow, Russia
  • N.E. Andreev, D. Pugacheva
    MIPT, Dolgoprudniy, Moscow Region, Russia
  • I.A. Andriyash, M.-E. Couprie, A. Ghaith, D. Oumbarek Espinos
    SOLEIL, Gif-sur-Yvette, France
  • T. Audet, B. Cros, G. Maynard
    CNRS LPGP Univ Paris Sud, Orsay, France
  • A. Bacci, D. Giove, V. Petrillo, A.R. Rossi, L. Serafini
    INFN-Milano, Milano, Italy
  • I.F. Barna, M.A. Pocsai
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
  • A. Beaton, A.F. Habib, T. Heinemann, B. Hidding, D.A. Jaroszynski, G.G. Manahan, P. Scherkl, Z.M. Sheng, D. Ullmann, S.M. Wiggins
    USTRAT/SUPA, Glasgow, United Kingdom
  • A. Beck, F. Massimo, A. Specka
    LLR, Palaiseau, France
  • A. Beluze, F. Mathieu, D.N. Papadopoulos
    LULI, Palaiseau, France
  • A. Bernhard, E. Bründermann, A.-S. Müller
    KIT, Karlsruhe, Germany
  • S. Bielawski, E. Roussel, C. Szwaj
    PhLAM/CERLA, Villeneuve d’Ascq, France
  • F. Brandi, G. Bussolino, L.A. Gizzi, P. Koester, L. Labate, B. Patrizi, G. Toci, P. Tomassini, M. Vannini
    INO-CNR, Pisa, Italy
  • M.H. Bussmann, A. Irman, U. Schramm
    HZDR, Dresden, Germany
  • M. Büscher, A. Lehrach
    FZJ, Jülich, Germany
  • A. Chancé, P.A.P. Nghiem, C. Simon
    CEA-IRFU, Gif-sur-Yvette, France
  • M. Chen, Z.M. Sheng
    Shanghai Jiao Tong University, Shanghai, People’s Republic of China
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • A. Cianchi
    INFN-Roma II, Roma, Italy
  • J.A. Clarke, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • J. Cole, S.M. Hooker, M.J.V. Streeter, R. Walczak
    JAI, Oxford, United Kingdom
  • P. A. Crump, M. Huebner
    FBH, Berlin, Germany
  • G. Dattoli, F. Nguyen
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • N. Delerue, K. Wang
    LAL, Orsay, France
  • J.M. Dias, R.A. Fonseca, J.L. Martins, L.O. Silva, T. Silva, U. Sinha, J.M. Vieira
    IPFN, Lisbon, Portugal
  • R. Fedele, G. Fiore, D. Terzani
    UniNa, Napoli, Italy
  • A. Ferran Pousa, T. Heinemann, V. Libov
    University of Hamburg, Hamburg, Germany
  • M. Galimberti, P.D. Mason, R. Pattathil, D. Symes
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • L.A. Gizzi, L. Labate
    INFN-Pisa, Pisa, Italy
  • F.J. Grüner, A.R. Maier
    CFEL, Hamburg, Germany
  • F.J. Grüner, O.S. Karger, A.R. Maier
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • C. Haefner, C. Siders
    LLNL, Livermore, California, USA
  • B.J. Holzer
    CERN, Geneva, Switzerland
  • S.M. Hooker
    University of Oxford, Oxford, United Kingdom
  • T. Hosokai
    ISIR, Osaka, Japan
  • C. Joshi
    UCLA, Los Angeles, California, USA
  • M. Kaluza
    IOQ, Jena, Germany
  • M. Kaluza
    HIJ, Jena, Germany
  • M. Kando
    JAEA/Kansai, Kyoto, Japan
  • S. Karsch
    LMU, Garching, Germany
  • E. Khazanov, I. Kostyukov
    IAP/RAS, Nizhny Novgorod, Russia
  • D. Khikhlukha, D. Kocon, G. Korn, K.O. Kruchinin, A.Y. Molodozhentsev, L. Pribyl
    ELI-BEAMS, Prague, Czech Republic
  • O. S. Kononenko, A. Lifschitz
    LOA, Palaiseau, France
  • C. Le Blanc, Z. Mazzotta
    Ecole Polytechnique, Palaiseau, France
  • X. Li
    DESY Zeuthen, Zeuthen, Germany
  • V. Litvinenko
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • W. Lu
    TUB, Beijing, People’s Republic of China
  • O. Lundh
    Lund University, Lund, Sweden
  • V. Malka
    Weizmann Institute of Science, Physics, Rehovot, Israel
  • S. P. D. Mangles, Z. Najmudin, A. A. Sahai
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • A. Mostacci
    INFN-Roma, Roma, Italy
  • A. Mostacci
    Sapienza University of Rome, Rome, Italy
  • C.D. Murphy
    York University, Heslington, York, United Kingdom
  • V. Petrillo
    Universita’ degli Studi di Milano, Milano, Italy
  • M. Rossetti Conti
    Universita’ degli Studi di Milano & INFN, Milano, Italy
  • G. Sarri
    Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
  • C.B. Schroeder
    LBNL, Berkeley, California, USA
  • C.-G. Wahlstrom
    Lund Institute of Technology (LTH), Lund University, Lund, Sweden
  • R. Walczak
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
  • M. Yabashi
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
 
  Funding: This work was supported by the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No. 653782.
The Horizon 2020 Project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to FEL pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for HEP detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW026  
About • paper received ※ 26 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)