Author: Dosanjh, M.
Paper Title Page
THPMP002 Optics Design and Beam Dynamics Simulation for a VHEE Radiobiology Beam Line at PRAE Accelerator 3444
  • A. Faus-Golfe, B. Bai, Y. Han, C. Vallerand
    LAL, Orsay, France
  • R. Delorme, Y. Prezado
    IMNC, Orsay, France
  • M. Dosanjh
    CERN, Meyrin, Switzerland
  • P. Duchesne
    IPN, Orsay, France
  • V. Favaudon, C. Fouillade, P.M. Poortmans, F. Pouzoulet
    Institut Curie - Centre de Protonthérapie d’Orsay, Orsay, France
  The Platform for Research and Applications with Electrons (PRAE) is a multidisciplinary R&D facility gathering subatomic physics, instrumentation, radiobiology and clinical research around a high-performance electron accelerator with beam energies up to 70 MeV. In this paper we report the complete optics design and performance evaluation of a Very High Energy Electron (VHEE) innovative radiobiology study, in particular by using Grid mini-beam and FLASH methodologies, which could represent a major breakthrough in Radiation Therapy (RT) treatment modality.  
DOI • reference for this paper ※  
About • paper received ※ 27 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPMP038 Collaborative Strategies for Meeting the Global Need for Cancer Radiation Therapy Treatment Systems 3526
  • M. Dosanjh, P. Collier, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • A. Aggarwal
    KCL, London, United Kingdom
  • D. Angal-Kalinin, P.A. McIntosh, B.L. Militsyn
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R. Apsimon
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • S.T. Boogert
    Royal Holloway, University of London, Surrey, United Kingdom
  • G. Burt
    Lancaster University, Lancaster, United Kingdom
  • N. Coleman, D.A. Pistenmaa
    ICEC, Washington, DC, USA
  • A.W. Cross
    USTRAT/SUPA, Glasgow, United Kingdom
  • I.V. Konoplev, S.L. Sheehy
    JAI, Oxford, United Kingdom
  The idea of designing affordable equipment and developing sustainable infrastructures for delivering radiation treatment for patients with cancer in countries that lack resources and expertise stimulated a first International Cancer Expert Corps (ICEC) championed, CERN-hosted workshop in Geneva in November 2016. Which has since been followed by three additional workshops involving the sponsorship and support from UK Science and Technology Facilities Council (STFC). One of the major challenges in meeting this need to deliver radiotherapy in low- and middle-income countries (LMIC) is to design a linear accelerator and associated instrumentation system which can be operated in locations where general infrastructures and qualified human resources are poor or lacking, power outages and water supply fluctuations can occur frequently and where climatic conditions might be harsh and challenging. In parallel it is essential to address education, training and mentoring requirements for current, as well as future novel radiation therapy treatment (RTT) systems.  
DOI • reference for this paper ※  
About • paper received ※ 11 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)