Author: Eshraqi, M.
Paper Title Page
MOPRB045 Future High Power Proton Drivers for Neutrino Beams 662
 
  • D.C. Plostinar, M. Eshraqi, B. Gålnander
    ESS, Lund, Sweden
  • V.A. Lebedev
    Fermilab, Batavia, Illinois, USA
  • C.R. Prior
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • Y. Sato
    KEK, Ibaraki, Japan
  • J.Y. Tang
    IHEP, Beijing, People’s Republic of China
 
  Funding: ESSnuSB has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 7774.
Over the last two decades, significant efforts were made through several international studies to identify and develop technical solutions for potential Neutrino Factories and Superbeam Facilities. With many questions now settled, as well as clearer R&D needs, various proposals are being made for future facilities in China, Europe, Japan and North America. These include both developing and adapting existing machines as well as green-field solutions. In this paper, we review all the major accelerator programmes aimed at delivering high-power proton beams for neutrino physics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB045  
About • paper received ※ 22 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB046 Status of the ESSnuSB Accumulator Design 666
 
  • Y. Zou, T.J.C. Ekelöf, M. Olvegård, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • E. Bouquerel, M. Dracos
    IPHC, Strasbourg Cedex 2, France
  • M. Eshraqi, B. Gålnander
    ESS, Lund, Sweden
  • H.O. Schönauer, E.H.M. Wildner
    CERN, Meyrin, Switzerland
 
  Funding: This project is supported by the COST Action CA15139 EuroNuNet. It has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777419.
The 2.0 GeV, 5 MW proton linac for the European Spallation Source, ESS, will have the capacity to accelerate additional pulses and send them to a neutrino target, providing an excellent opportunity to produce an unprecedented high performance neutrino beam, the ESS neutrino Super Beam, ESSnuSB, to measure, with precision, the CP violating phase at the 2nd oscillation maximum. In order to comply with the acceptance of the target and horn systems that will form the neutrino super beam, the long pulses from the linac must be compressed by about three orders of magnitude with minimal particle loss, something that will be achieved through multi-turn charge-exchange injection in an accumulator ring. This ring will accommodate over 2·1014 protons, which means that several design challenges are encountered. Strong space charge forces, low-loss injection with phase space painting, efficient collimation, a reliable charge stripping system, and e-p instabilities are some of the important aspects central to the design work. This paper presents the status of the accumulator ring design, with multi-particle simulations of the injections procedure.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB046  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS081 Design of the Transferline to the ESS Target and Beam Dump at Reduced Beam Energy 1034
 
  • Y.S. Qin, M. Eshraqi, Y. Levinsen, R. Miyamoto
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) linac transfer-lines to the target and beam dump are designed for the 2 GeV beam energy. The commissioning and operation of the accelerator will start at a reduced energy of 571 MeV with the high beta part of the linac unpowered. The beam power at this energy is still above 1 MW and a proper transport from the last accelerating cavity to the target is essential. Beam dynamics design of the High Energy Beam Transport (HEBT) and Accelerator to Target (A2T) are studied based on this reduced energy in this paper, including phase advance optimization and rematch. Among the factors which are analyzed are the envelope and beam size on the target which are kept close to their values at 2 GeV and losses along the linac and the transfer lines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS081  
About • paper received ※ 10 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS082 Status of ESS Linac Upgrade Studies for ESSnuSB 1038
 
  • B. Gålnander, M. Eshraqi, C.A. Martins, R. Miyamoto
    ESS, Lund, Sweden
  • M. Collins
    Lund Technical University, Lund, Sweden
  • A. Farricker
    CERN, Geneva, Switzerland
 
  Funding: ESSnuSB has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777419.
The European Spallation Source (ESS), currently under construction in Lund, Sweden, is the world’s most powerful neutron spallation source, with an average power of 5 MW at 2.0 GeV. In the ESS neutrino Super Beam Project (ESSnuSB) it is proposed to utilise this powerful accelerator as a proton driver for a neutrino beam that will be sent to a large underground Cherenkov detector in Garpenberg, mid-Sweden. In this paper we discuss the required modifications of the ESS linac to reach an additional 5 MW beam power for neutrino production in parallel to the spallation neutron production.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS082  
About • paper received ※ 17 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS083 Beam Dynamics Simulation with an Updated Model for the ESS Ion Source and Low Energy Beam Transport 1042
 
  • E. Nilsson, M. Eshraqi, J.F. Esteban Müller, Y. Levinsen, N. Milas, R. Miyamoto
    ESS, Lund, Sweden
 
  Beam dynamics simulation of the ion source (IS) and low energy beam transport (LEBT) of the European Spallation Source (ESS) Linac is conducted with TraceWin and IBSimu code. TraceWin allows multi-particle tracking based on a particle-in-cell space-charge solver and is the standard simulation tool of the whole ESS Linac. IBSimu is based on a Vlasov solver and allows to simulate beam extraction from plasma as well as the beam transport in the LEBT. In preparation for beam commissioning of the IS and LEBT in the ESS Linac tunnel, which started in September 2018 and is ongoing as of the timing of writing this paper, the simulation models of the IS and LEBT in these two codes were updated. This paper reports the effort for these updates, including the beam distribution out of the IS, electromagnetic field map of the LEBT solenoid, more realistic aperture structure in the LEBT, as well as updated LEBT solenoids scan simulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS083  
About • paper received ※ 17 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS103 First Results of Beam Commissioning on the ESS Site for the Ion Source and Low Energy Beam Transport 1118
 
  • R. Miyamoto, R.E. Bebb, E.C. Bergman, B. Bertrand, H. Danared, C.S. Derrez, E.M. Donegani, M. Eshraqi, J.F. Esteban Müller, T. Fay, V. Grishin, B. Gålnander, S. Haghtalab, H. Hassanzadegan, A. Jansson, H. Kocevar, E. Laface, Y. Levinsen, M. Mansouri, C.A. Martins, J.P.S. Martins, N. Milas, M. Muñoz, E. Nilsson, D.C. Plostinar, C. Rosati, T.J. Shea, A.G. Sosa, R. Tarkeshian, L. Tchelidze, C.A. Thomas, P. L. van Velze
    ESS, Lund, Sweden
  • I. Bergstrom
    CERN, Meyrin, Switzerland
  • L. Celona, L. Neri
    INFN/LNS, Catania, Italy
 
  The European Spallation Source (ESS), currently under construction in Lund, Sweden, will be a spallation neutron source driven by a proton linac of an unprecedented 5 MW beam power. Such a high power requires its ion source (IS) to produce proton beam pulses at 14 Hz with a high peak current more than 62.5 mA and a long plateau up to §I{3}{ms}. The IS and the following low energy beam transport (LEBT) section were manufactured and tested with beam to meet ESS requirements at INFN-LNS and delivered to ESS towards the end of 2017. Beam commissioning of these two sections on the ESS site has started in September 2018 and will continue until the end of June 2019. This paper provides an overview on this first beam commissioning period at ESS and also presents results of IS characterization and testing on LEBT functionalities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS103  
About • paper received ※ 20 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB063 Field Control Challenges for Different LINAC Types 3946
SUSPFO095   use link to see paper's listing under its alternate paper code  
 
  • O. Troeng, A.J. Johansson
    Lund University, Lund, Sweden
  • M. Eshraqi
    ESS, Lund, Sweden
  • S. Pfeiffer
    DESY, Hamburg, Germany
 
  Linacs for free-electron lasers typically require cavity field stabilities of 0.01\% and 0.01 degree, while the requirements for high-intensity proton linacs are on the order of 0.1–1\% and 0.1–1 degrees. From these numbers it is easy to believe that the field control problem for proton linacs is many times easier than for free-electron lasers linacs. In this contribution we explain why this is not necessarily the case, and discuss the factors that make field control challenging. We also discuss the drivers for field stability, and how high-level decisions on the linac design affect the difficulty of the field control problem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB063  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)