Author: Fang, Y.
Paper Title Page
Experimental Demonstration of External Injection From a Linac into a LWFA with ~100% Capture Efficiency  
  • J.F. Hua, Y. C. Du, Y. Fang, S. Liu, W. Lu, C.H. Pai, B. Peng, Y.P. Wu, J. Zhang, Z. Zhou
    TUB, Beijing, People’s Republic of China
  Staging of conventional accelerators and advanced plasma-based accelerators can boost the beam energy while at the same time better control the beam quality, therefore it is essential for high-energy applications such as TeV-level colliders. Here we present the first successful demonstration of external injection from a linear accelerator (LINAC) into a laser wakefield accelerator (LWFA) and the subsequent acceleration with ~100% capture efficiency. Stable 31MeV, 20fC electron beams from the LINAC were velocity bunched to the length of ~15fs (r.m.s.) in the high-gradient photocathode RF gun and then external injected into the linear wakefield excited by the 10TW, 42fs laser. The experimental results show that nearly all the electrons can be mono-energetically accelerated and the maximum energy gain reaches 1.8MeV in a 6-mm long plasma, corresponding to an average gradient of about 300MV/m. High capture efficiency of external injection has also been systematically validated by 3D PIC simulations. This paves the way toward the development of high-energy particle accelerators for future colliders.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)