Author: Faus-Golfe, A.
Paper Title Page
MOPGW086 Intensity Dependent Effects at ATF2, KEK 308
SUSPFO104   use link to see paper's listing under its alternate paper code  
 
  • P. Korysko, A. Latina
    CERN, Geneva, Switzerland
  • P. Burrows
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • A. Faus-Golfe
    LAL, Orsay, France
  • K. Kubo, T. Okugi
    KEK, Ibaraki, Japan
 
  The Accelerator Test Facility 2 (ATF2) at KEK is a prototype for the Final Focus Systems of the future e+e linear colliders, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC). In this paper both simulation and experimental results are presented with special emphasis on intensity-dependent effects. The importance of these effects is shown using the PLACET code and realistic ATF2 machine simulations (including beam jitter, misalignment, wakefield, Beam Based Alignment (BBA) correction, …). The latest experimental results are also presented, in particular the impact of the beam intensity on the beam size at the IP.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW086  
About • paper received ※ 23 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP003 Positron Source for FCC-ee 424
 
  • I. Chaikovska, R. Chehab, A. Faus-Golfe, Y. Han
    LAL, Orsay, France
  • A. Apyan
    ANSL, Yerevan, Armenia
  • Y. Enomoto, K. Furukawa, T. Kamitani, F. Miyahara, M. Satoh, Y. Seimiya, T. Suwada
    KEK, Ibaraki, Japan
  • P.V. Martyshkin
    BINP SB RAS, Novosibirsk, Russia
  • S. Ogur, K. Oide, Y. Papaphilippou, L. Rinolfi, P. Sievers, F. Zimmermann
    CERN, Meyrin, Switzerland
 
  The FCC-ee is a high-luminosity, high-precision circular collider to be constructed in a new 100 km tunnel in the Geneva area. The physics case is well established and the FCC-ee operation is foreseen at 91 GeV (Z-pole), 160 GeV (W pair production threshold), 240 GeV (Higgs resonance) and 365 GeV (t-tbar threshold). Due to the large 6D production emittance and important thermal load in the production target, the positron injector, in particular the positron source, is one of the key elements of the FCC-ee, requiring special attention. To ensure high reliability of the positron source, conventional and hybrid targets are currently under study. The final choice of the positron target will be made based on the estimated performances. In this framework, we present a preliminary design of the FCC-ee positron source, with detailed simulation studies of positron production, capture and primary acceleration.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP003  
About • paper received ※ 03 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB048 Collimation System Studies for the FCC-hh 669
 
  • R. Bruce, A. Abramov, A. Bertarelli, M.I. Besana, F. Carra, F. Cerutti, M. Fiascaris, G. Gobbi, A.M. Krainer, A. Lechner, A. Mereghetti, D. Mirarchi, J. Molson, M. Pasquali, S. Redaelli, D. Schulte, E. Skordis, M. Varasteh Anvar
    CERN, Meyrin, Switzerland
  • A. Abramov
    JAI, Egham, Surrey, United Kingdom
  • A. Faus-Golfe
    LAL, Orsay, France
  • M. Serluca
    IN2P3-LAPP, Annecy-le-Vieux, France
 
  The Future Circular Collider (FCC-hh) is being designed as a 100 km ring that should collide 50 TeV proton beams. At 8.3 GJ, its stored beam energy will be a factor 28 higher than what has been achieved in the Large Hadron Collider, which has the highest stored beam energy among the colliders built so far. This puts unprecedented demands on the control of beam losses and collimation, since even a tiny beam loss risks quenching superconducting magnets. We present in this article the design of the FCC-hh collimation system and study the beam cleaning through simulations of tracking, energy deposition, and thermo-mechanical response. We investigate the collimation performance for design beam loss scenarios and potential bottlenecks are highlighted.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB048  
About • paper received ※ 18 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYPLS1
The Brave New World of Accelerators Applications  
 
  • A. Faus-Golfe
    LAL, Orsay, France
 
  During the past century particle accelerators and their technology have played an essential role to improve standards of living and well-being. Originally developed to investigate the fundamental laws of nature, today, accelerators in different configurations are producing beams of subatomic particles and charged atoms that help to manage our health and our environment; they also provide a significant tool for manufacturing industry, for sustaining greener, safer energy, and for securing our borders and ensuring national security. They offer advance investigation methods considered essential in many fields of basic and applied science. Innovative technical developments are in progress or in the horizon, and will extend the practical use of accelerators even further for the social and economic benefit of all. The quest for more compact, more efficient, lower cost, portable, combined with imaging,… is ongoing and not absent of challenges. In this talk the recent developments of particle accelerators focused in societal applications will be described as well as the issues, challenges and opportunities the R&D in this brave new field is facing.  
slides icon Slides TUYPLS1 [22.430 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB032 The CompactLight Design Study Project 1756
 
  • G. D’Auria, S. Di Mitri, R.A. Rochow
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Aicheler
    HIP, University of Helsinki, Finland
  • A.A. Aksoy
    Ankara University, Accelerator Technologies Institute, Golbasi, Turkey
  • D. Alesini, M. Bellaveglia, B. Buonomo, F. Cardelli, M. Croia, M. Diomede, M. Ferrario, A. Gallo, A. Giribono, L. Piersanti, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • R. Apsimon, A. Castilla
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • J.M. Arnesano, F. Bosco, L. Ficcadenti, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • A. Bernhard, J. Gethmann
    KIT, Karlsruhe, Germany
  • G. Burt
    Lancaster University, Lancaster, United Kingdom
  • M. Calvi, T. Schmidt, K. Zhang
    PSI, Villigen PSI, Switzerland
  • H.M. Castaneda Cortes, J.A. Clarke, D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.W. Cross, L. Zhang
    USTRAT/SUPA, Glasgow, United Kingdom
  • G. Dattoli, F. Nguyen, A. Petralia
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • R.T. Dowd, D. Zhu
    AS - ANSTO, Clayton, Australia
  • W.D. Fang
    SINAP, Shanghai, People’s Republic of China
  • A. Faus-Golfe, Y. Han
    LAL, Orsay, France
  • E.N. Gazis, N. Gazis
    National Technical University of Athens, Zografou, Greece
  • R. Geometrante, M. Kokole
    KYMA, Trieste, Italy
  • V.A. Goryashko, M. Jacewicz, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • X.J.A. Janssen, J.M.A. Priem
    VDL ETG, Eindhoven, The Netherlands
  • A. Latina, X. Liu, C. Rossi, D. Schulte, S. Stapnes, X.W. Wu, W. Wuensch
    CERN, Geneva, Switzerland
  • O.J. Luiten, P.H.A. Mutsaers, X.F.D. Stragier
    TUE, Eindhoven, The Netherlands
  • J. Marcos, E. Marín, R. Muñoz Horta, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • G. Taylor
    The University of Melbourne, Melbourne, Victoria, Australia
 
  Funding: This project has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreement No 777431
The H2020 CompactLight Project (www. CompactLight.eu) aims at designing the next generation of compact X-rays Free-Electron Lasers, relying on very high gradient accelerating structures (X-band, 12 GHz), the most advanced concepts for bright electron photo injectors, and innovative compact short-period undulators. Compared to existing facilities, the proposed facility will benefit from a lower electron beam energy, due to the enhanced undulators performance, and will be significantly more compact, with a smaller footprint,  as a consequence of the lower energy and the high-gradient X-band structures. In addition, the whole infrastructure will also have a lower electrical power demand as well as lower construction and running costs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB032  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB058 Combined Field Emission and Multipactor Simulation in High Gradient RF Accelerating Structures 2940
SUSPFO091   use link to see paper's listing under its alternate paper code  
 
  • D. Banon-Caballero
    IFIC, Valencia, Spain
  • N. Catalán Lasheras, K. T. Szypula, W. Wuensch
    CERN, Geneva, Switzerland
  • A. Faus-Golfe
    LAL, Orsay, France
  • B. Gimeno
    UVEG, Burjasot (Valencia), Spain
 
  Field emitted electrons have important consequences in the operation of high-gradient RF accelerating structures both by generating so-called dark currents and initiating RF breakdown. The latter is an important limitation of the performance in such devices. Another kind of vacuum discharge that primarily affects the operation of lower-field RF components, for example those used in space applications, is multipactor. Theoretical simulations using CST Particle Studio, show that field emitted electrons generated in the high field regions of high-gradient accelerating cavities migrate to low field regions under ponderomotive forces potentially triggering multipactor there. This phenomenon is an interplay between high field and low field processes which may have as a consequence that multipactor actually affects to the performance of high-gradient cavities because field emitted electrons might reduce the timescales for the onset of multipactor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB058  
About • paper received ※ 27 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB059 Dark Current Analysis at CERN’s X-band Facility 2944
 
  • D. Banon-Caballero, M. Boronat, V. Sánchez Sebastián, A. Vnuchenko
    IFIC, Valencia, Spain
  • N. Catalán Lasheras, S. Pitman, M. Widorski, W. Wuensch, V. del Pozo Romano
    CERN, Meyrin, Switzerland
  • A. Faus-Golfe
    LAL, Orsay, France
  • B. Gimeno
    UVEG, Burjasot (Valencia), Spain
  • T.G. Lucas, M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
  • W.L. Millar
    Lancaster University, Lancaster, United Kingdom
  • J. Paszkiewicz
    University of Oxford, Oxford, United Kingdom
 
  Dark current is particularly relevant during operation in high-gradient linear accelerators. Resulting from the capture of field emitted electrons, dark current produces additional radiation that needs to be accounted for in experiments. In this paper, an analysis of dark current is presented for four accelerating structures that were tested and conditioned in CERN’s X-band test facility for CLIC. The dependence on power, and therefore on accelerating gradient, of the dark current signals is presented. The Fowler-Nordheim equation for field emission seems to be in accordance with the experimental data. Moreover, the analysis shows that the current intensity decreases as a function of time due to conditioning, but discrete jumps in the dark current signals are present, probably caused by breakdown events that change the emitters’ location and intensity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB059  
About • paper received ※ 10 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP002 Optics Design and Beam Dynamics Simulation for a VHEE Radiobiology Beam Line at PRAE Accelerator 3444
 
  • A. Faus-Golfe, B. Bai, Y. Han, C. Vallerand
    LAL, Orsay, France
  • R. Delorme, Y. Prezado
    IMNC, Orsay, France
  • M. Dosanjh
    CERN, Meyrin, Switzerland
  • P. Duchesne
    IPN, Orsay, France
  • V. Favaudon, C. Fouillade, P.M. Poortmans, F. Pouzoulet
    Institut Curie - Centre de Protonthérapie d’Orsay, Orsay, France
 
  The Platform for Research and Applications with Electrons (PRAE) is a multidisciplinary R&D facility gathering subatomic physics, instrumentation, radiobiology and clinical research around a high-performance electron accelerator with beam energies up to 70 MeV. In this paper we report the complete optics design and performance evaluation of a Very High Energy Electron (VHEE) innovative radiobiology study, in particular by using Grid mini-beam and FLASH methodologies, which could represent a major breakthrough in Radiation Therapy (RT) treatment modality.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP002  
About • paper received ※ 27 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP003 The PRORAD Beam Line Design for PRAE 3448
 
  • A. Faus-Golfe, B. Bai, Y. Han, C. Vallerand
    LAL, Orsay, France
  • P. Duchesne, E. J-M. Voutier
    IPN, Orsay, France
  • D. Marchand
    LPSC, Grenoble Cedex, France
 
  The PRAE (Platform for Research and Applications with Electrons) accelerator is being built at Orsay campus with the main objective of creating a multidisciplinary R&D platform, involving subatomic physics, instrumentation, radiobiology and clinical research around a high-performance electron accelerator with beam energies up to 70 MeV (planned 140 MeV). In this paper we will report the optics design and beam dynamics simulations for the beam line dedicated to subatomic physics, more specifically for the measurement of the proton radius. This measurement requires extremely low energy spread (5×10−4) and small beam sizes with low divergence at three beam energies: 30, 50 and 70 MeV. The beam line includes a D-type chicane coupled to a dechirping passive structure, which generates inductive wakefields in order to get the performances required for such measurement.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP003  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)