Author: Feng, G.
Paper Title Page
WEPGW051 Designing of a Solenoid Lens for the Application to a Compact Electron Beam Testing Bench 2591
 
  • S.Y. Lu, G. Feng, T. Hu, X.D. Tu, Y.Q. Xiong, P. Yang
    HUST, Wuhan, People’s Republic of China
 
  To calculate beams transport is vital for designing vacuum pipe and arranging focusing elements for each electron beam line system. Space charge effects of a low-energy, high-intensity DC electron beam focused by a solenoid lens with bucking coil are investigated theoretically in this paper. A second-order equation is numerical solved for the beam envelope focused by a short solenoid lens. In addition, a conventional transfer matrix of solenoid is not applicable to low-energy, high-intensity electron beams because the strong space charge effects are ignored. By cutting a solenoid into several segments, we have derived a micro-transfer matrix which takes space charge fields into account, and a complete beam envelope for a transport system. A simulation is used to verify our theoretical calculation results, and corresponding discussions are given in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW051  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS077 Beam Instability Induced by RF System of an FEL-THZ Source 4298
SUSPFO004   use link to see paper's listing under its alternate paper code  
 
  • X.D. Tu, G. Feng, S.J. He, T. Hu, J. Jiang, S.Y. Lu, Y.Q. Xiong
    HUST, Wuhan, People’s Republic of China
 
  An SLAC-like Compact Linac installed on the HUST FEL-THz has been used as an injector to produce high power THz radiation. To meet the requirements of monochromaticity and repeatability for FEL, performance of electron beam and stability of RF system are notable. According to the existing facility, based on measurement results of RF jitter, instability of beam has been calculated, and it has been verified in relevant experiments. Furthermore, stability targets in RF system has been pro-posed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS077  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS046 Commissioning of a Compact THz Source Based on FEL 2030
 
  • Y.J. Pei, G. Feng, X.Y. He, Y. Hong, D. Jia, P. Lu, S. Lu, L. Shang, B.G. Sun, Zh. X. Tang, W. Wang, X.Q. Wang, W. Wei
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • L. Cao, Q.S. Chen, Q. Fu, T. Hu, P. Tan, Y.Q. Xiong
    HUST, Wuhan, People’s Republic of China
  • G. Huang
    IMP/CAS, Lanzhou, People’s Republic of China
  • L.G. Shen, F. Zhang
    USTC/PMPI, Hefei, Anhui, People’s Republic of China
 
  The layout of the THz source based on FEL was de-scribed in this paper. The THz source was based on a FEL which was composed of a compact 8-14MeV LINAC, undulator, optical resonance, THz wave measurement system and so on. The facility was designed in 2013 and the typical running parameter got in 2017 were as the following: energy is of 12.7MeV, energy spread is of 0.3%, macro-pulse is of 4 μs, pulse length of micro-pulse is of 6ps, emittance is of 24 mm.mrad. After that the ma-chine was commissioning for production THz radiation. In November 2018, the THz wave was test and got THz wave signal, the spectrum was also got. This year, we plan to measure the output power of the THz source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS046  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)