Author: Fransen, M.
Paper Title Page
THPMP033 Beam Characterisation Using MEDIPIX3 and EBT3 Film at the Clatterbridge Proton Therapy Beamline 3510
SUSPFO110   use link to see paper's listing under its alternate paper code  
  • J.S.L. Yap, J. Resta-López, R. Schnuerer, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N.J.S. Bal
    ASI, Amsterdam, The Netherlands
  • N.J.S. Bal, M. Fransen, F. Linde
    NIKHEF, Amsterdam, The Netherlands
  • A. Kacperek
    The Douglas Cyclotron, The Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, United Kingdom
  • J.L. Parsons
    Cancer Research Centre, University of Liverpool, Liverpool, United Kingdom
  • J. Resta-López, R. Schnuerer, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  Funding: EU FP7 grant agreement 215080, H2020 Marie Skłodowska-Curie grant agreement No 675265 - Optimization of Medical Accelerators (OMA) project and the Cockcroft Institute core grant STGA00076-01.
The Clatterbridge Cancer Centre (CCC) in the UK is a particle therapy facility providing treatment for ocular cancers using a 60 MeV passively scattered proton therapy beam. A model of the beamline using the Monte Carlo Simulation toolkit Geant4 has been developed for accurate characterisation of the beam. In order to validate the simulation, a study of the beam profiles along the delivery system is necessary. Beam profile measurements have been performed at multiple positions in the CCC beam line using both EBT3 GAFchromic film and Medipix3, a single quantum counting chip developed specifically for medical applications, typically used for x-ray detection. This is the first time its performance has been tested within a clinical, high proton flux environment. EBT3 is the current standard for conventional radiotherapy film dosimetry and was used to determine the dose and for correlation to fluence measured by Medipix3. The count rate linearity and doses recorded with Medipix3 were evaluated across the full range of available beam intensities, up to 3.12 x 1010 protons/s. The applicability of Medipix3 for proton therapy dosimetry is discussed and compared against the performance of EBT3.
DOI • reference for this paper ※  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)