Author: Garimella, R.
Paper Title Page
MOPGW116 Validation of a Novel Method for the Calculation of Near-Field Synchrotron Radiation 397
  • F.Y. Li, B.E. Carlsten, R. Garimella, C. Huang, T.J. Kwan
    LANL, Los Alamos, New Mexico, USA
  Funding: Work supported by the LDRD program at LANL.
The phenomenon of synchrotron radiation (SR) from electrons is at the core of modern accelerator based light sources. While SR in the far field has been well characterized, the near-field SR and its impacts on self-consistent electron beam dynamics remain an ongoing topic. Since it is difficult to experimentally characterize the near fields, it is desirable to develop accurate and efficient numerical methods for the design of these light sources. Here, we investigate a novel method, originally proposed by Shintake and which potentially has both high efficiency and accuracy. We focus on the field calculation of this method and show that the original idea has missed the important terms of fields due to electron acceleration and therefore only applies to a linear motion. To correct this limitation we developed a modified algorithm that gives consistent fields with direct calculations using the Liénard-Wiechert equation. Some basic signatures of the near-field SR fields are also drawn for a cyclotron motion by using this modified approach.
DOI • reference for this paper ※  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)