Author: Garolfi, L.
Paper Title Page
MOPTS054 Status of the CLEAR Electron Beam User Facility at CERN 983
 
  • K.N. Sjobak, E. Adli, C.A. Lindstrøm
    University of Oslo, Oslo, Norway
  • M. Bergamaschi, S. Burger, R. Corsini, A. Curcio, S. Curt, S. Döbert, W. Farabolini, D. Gamba, L. Garolfi, A. Gilardi, I. Gorgisyan, E. Granados, H. Guerin, R. Kieffer, M. Krupa, T. Lefèvre, S. Mazzoni, G. McMonagle, N. Nadenau, H. Panuganti, S. Pitman, V. Rude, A. Schlogelhofer, P.K. Skowroński, M. Wendt, A. P. Zemanek
    CERN, Geneva, Switzerland
  • A. Lyapin
    UCL, London, United Kingdom
 
  The CERN Linear Electron Accelerator for Research (CLEAR) has now finished its second year of operation, providing a testbed for new accelerator technologies and a versatile radiation source. Hosting a varied experimental program, this beamline provides a flexible test facility for users both internal and external to CERN, as well as being an excellent accelerator physics training ground. The energy can be varied between 60 and 220 MeV, bunch length between 1 and 4 ps, bunch charge in the range 10 pC to 2 nC, and number of bunches in the range 1 to 200, at a repetition rate of 0.8 to 10 Hz. The status of the facility with an overview of the recent experimental results is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS054  
About • paper received ※ 12 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB008 Design Study of High Gradient Compact S-band TW Accelerating Structure for the ThomX LINAC Upgrade 2807
 
  • M. El Khaldi, M. Alkadi, C. Bruni, L. Garolfi, A. Gonnin, H. Monard
    LAL, Orsay, France
 
  ThomX is a Compton source project in the range of the hard X rays (45/90 keV). The machine is composed of a 50/70 MeV injector Linac and a storage ring where an electron bunch collides with a laser pulse accumulated in a Fabry-Perot resonator. The final goal is to provide an X-rays average flux of 1012-1013 ph/s. A demonstrator was funded and is being built on the Orsay university campus. The S-band injector Linac consists of 2.5 cell photocathode RF gun and a TW accelerating section. During the commissioning phase, a standard LIL S-band accelerating section is able to achieve around 50 MeV corresponding to around 45 keV X-rays energy. Since the maximum targeted X-ray energy is 90 keV, the development of a new S-band accelerating section, intended to replace the LIL structure, will provide an electron beam energy of 70 MeV. This requires essentially the development of more reliable high gradient compact S band accelerating section. Such design is tailored for high gradient operation, low breakdown rates. We present here the RF design of the LINAC upgrade and the performances obtained in terms of beam dynamics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB008  
About • paper received ※ 02 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)