Author: Guo, J.
Paper Title Page
MOPRB080 Transient Beam Loading and Mitigation in JLEIC Collider Rings 758
 
  • J. Guo, R.A. Rimmer, H. Wang, S. Wang
    JLab, Newport News, Virginia, USA
  • J.D. Fox
    Stanford University, Stanford, California, USA
  • T. Mastoridis
    CalPoly, San Luis Obispo, California, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177, with additional support from U.S. DOE Award Number DE-SC-0019287
The Jefferson Lab Electron-Ion Collider (JLEIC) is an asymmetric high luminosity ring-ring collider proposed as the next major R&D facility for the nuclear physics community. Both of JLEIC’s electron and ion collider rings have high beam current with gaps serving the pur-poses of beam abort, ion clearing, etc. Such a time-varying beam loading in the RF cavities would generate modulation in cavity RF phase/voltage, causing cyclic shift of collision point and potential luminosity loss. We studied a few approaches to mitigate the RF phase modu-lation and IP shift, such as correcting the RF phase/voltage modulation with traditional LLRF feed-back, one-turn feedback (OTFB), or RF feedforward (FF); optimizing the bunch fill pattern to limit the RF phase/voltage modulation to a small fraction of the bunch trains in the collider ring; or matching the RF phase modulation in the two rings. The preliminary re-sults are discussed in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB080  
About • paper received ※ 23 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW019 Progress of the BESSY VSR Cold String Development and Testing 1434
 
  • H.-W. Glock, V. Dürr, F. Glöckner, J. Knobloch, M. Tannert, A.V. Vélez, D. Wolk, N. Wunderer
    HZB, Berlin, Germany
  • J. Guo, R.A. Rimmer, H. Wang
    JLab, Newport News, Virginia, USA
 
  The so-called VSR (Variable Storage Ring) upgrade of the 3rd gen. light source BESSY II will provide the capability to simultaneously store long (about 20 ps rms length) and short (1 ps or less) bunches in the ring. This will be accomplished by inserting a module with four superconducting cavities, two of them operating at 1.5 GHz as the third harmonic of the 500 MHz driving RF, two at 1.75 GHz. The "cold" string of those four cavities also includes supporting and connecting devices, as there will be: - three intermediate bellows, all shielded against leaking fundamental mode cavity fields, one additionally acting as a collimator for incident synchrotron light; - two tuneable bellows at the module ends; - two warm end groups outside the module, housing toroidal dielectric wake field absorbers, another bellow and a vacuum pump connection. The recent design progress of those components will be reported, including a description of a beam test planned for the central collimating shielded bellow.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW019  
About • paper received ※ 22 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS105 High Current High Charge Magnetized and Bunched Electron Beam from a DC Photogun for JLEIC Cooler 2167
 
  • S. Zhang, P.A. Adderley, J. F. Benesch, D.B. Bullard, J.M. Grames, J. Guo, F.E. Hannon, J. Hansknecht, C. Hernandez-Garcia, R. Kazimi, G.A. Krafft, M.A. Mamun, M. Poelker, R. Suleiman, M.G. Tiefenback, Y.W. Wang
    JLab, Newport News, Virginia, USA
  • J.R. Delayen, G.A. Krafft, Y.W. Wang, S.A.K. Wijethunga
    ODU, Norfolk, Virginia, USA
 
  Funding: This project was supported by the U.S. DOE Basic Energy Sciences under contract No. DE-AC05-060R23177. Additional support comes from Laboratory Directed Research and Development program.
A high current, high charge magnetized electron beamline that has been under development for fast and efficient cooling of ion beams for the proposed Jefferson Lab Electron Ion Collider (JLEIC). In this paper, we present the latest progress over the past year that include the generation of picosecond magnetized beam bunches at average currents up to 28 mA with exceptionally long photocathode lifetime, and the demonstrations of magnetized beam with high bunch charge up to 700 pC at 10s of kHz repetition rates. Detailed studies on a stable drive laser system, long lifetime photocathode, beam magnetization effect, beam diagnostics, and a comparison between experiment and simulations will also be reported. These accomplishes marked an important step towards the essential feasibility for the JLEIC cooler design using magnetized beams.
(To be inserted)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS105  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB099 Status Update of a Harmonic Kicker Development for JLEIC 3047
 
  • G.-T. Park, J. Guo, J. Henry, M. Marchlik, F. Marhauser, R.A. Rimmer, H. Wang, S. Wang
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
An effort to develop the second prototype of the harmonic kicker for the Circulator Cooler Ring (CCR) of the Jefferson Lab Electron-Ion Collider (JLEIC) is under way. After beam dynamics studies and completion of a conceptual RF design of the kicker [1], further progress has been made toward the final mechanical design including the input power coupler (loop) design, tuner ports, multipacting studies. Furthermore, concerning the kicker’s compatibility with beam dynamics, the impact of RF multipole components was investigated and a scheme was developed to cancel out detrimental beam effects.
1. G. Park, et al, The Development of a New Fast Harmonic Kicker for the JLEIC Circulator Cooler Ring, TUPAL068, proceedings of IPAC 2018.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB099  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)