Author: Hoffmann, M.C.
Paper Title Page
THPGW079 THz-Based Femtosecond MeV Electron Bunch Compression 3766
 
  • M. A. K. Othman, M.C. Hoffmann, M.E. Kozina, R.K. Li, E.A. Nanni, X. Shen, E.J. Snively, X.J. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by Department of Energy contract DE-AC02-76SF00515.
Probing structural dynamics at atomic spatial and ultrashort temporal scales reveals unprecedented details of fundamental behavior of nature, allowing for better understanding of intricate energy-matter interaction occurring at such scales. Developing state-of-the-art technology to access these details entails utilizing X-ray free-electron lasers (XFELs), ultrafast electron diffraction (UED), and advanced electron microscopes. In particular, ultrafast diffraction science received growing attention thanks to innovation in sources, detectors and instrumentation in general. Within this context, interest in laser-generated THz wave-matter interaction has recently emerged as a new regime for controlling electrons with high temporal precision. Previously, the SLAC UED team has demonstrated attosecond electron metrology using laser-generated single-cycle THz radiation, which is intrinsically phase locked to the optical drive pulses, to manipulate multi-MeV relativistic electron beams. Here we demonstrate further steps towards achieving ultrafast timing resolution that utilizes femtosecond electron bunches. The proposed setup allows for compressing electron beam bunches down to a femtosecond using interaction with high field single-cycle THz pulses. We demonstrate a novel design of a dispersion-free parallel-plate tapered waveguide that provides focusing of THz pulses achieving >100 MV/m field strength at the interaction point as measured by electro-optical sampling for ~7 μJ of incoming THz pulse energy. The structure is being designed and built for bunch compression experiments using the SLAC UED facility.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW079  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)