Author: Meliga, P.
Paper Title Page
THPMP010 Implementation of RF-KO Extraction at CNAO 3469
 
  • S. Savazzi, E. Bressi, G. Debernardi, L. Falbo, V. Lante, C. Priano, M. G. Pullia
    CNAO Foundation, Pavia, Italy
  • P. Meliga
    University of Pavia, Pavia, Italy
  • G. Russo
    Politecnico di Torino, Torino, Italy
 
  The National Centre for Oncological Hadrontherapy (CNAO) is a synchrotron based particle therapy facility. Both protons and carbon ions can be used for treatments. The main extraction system is based on ’amplitude-momentum selection’ driven by a betatron core, but RF-KO (Radio-Frequency Knock Out) is being implemented as an alternative extraction scheme, being more suitable for a future implementation of a ’multi energy extraction’ operation of the accelerator. With a double extraction possibility, CNAO would allow an interesting theoretical and experimental evaluation of the relative merits of the two extraction schemes. The RF deflector is already installed and the RF power generation is under commissioning. Extraction simulations and first results of the system are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP010  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP011 Optics and Commissioning of the CNAO Experimental Beam Line 3472
 
  • S. Savazzi, E. Bressi, L. Falbo, V. Lante, C. Priano, M. G. Pullia
    CNAO Foundation, Milan, Italy
  • P. Meliga
    University of Pavia, Pavia, Italy
 
  CNAO (National Centre for Oncological Hadronthera-py) in Pavia is one of the six centres worldwide in which hadrontherapy is administered with both protons and carbon ions. The main accelerator is a 25 m diameter synchrotron designed to accelerate carbon ions up to an energy of 400 MeV/u and protons up to an energy of 250 MeV. It was designed with three treatment rooms and an ’experimental room’ where research can be carried out. The room itself was built since the beginning, but the beam line was planned to be installed in a second moment in order to give priority to treatments. The beam line of the experimental room (XPR) is designed to be "general purpose", for research activities in different fields. In October 2018 the installation phase of the line was started and it ended in January 2019. In this paper a short description of the optics layout and commissioning strategy is given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP011  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)