Author: Sei, N.
Paper Title Page
TUPRB039 Research of Coherent Edge Radiation Generated by Electron Beams Oscillating Free-Electron Lasers 1772
  • N. Sei, H. Ogawa
    AIST, Tsukuba, Ibaraki, Japan
  • K. Hayakawa, Y. Hayakawa, K. Nogami, T. Sakai, Y. Sumitomo, Y. Takahashi, T. Tanaka
    LEBRA, Funabashi, Japan
  • H. Ohgaki, H. Zen
    Kyoto University, Kyoto, Japan
  Funding: JSPS KAKENHI Grant Number JP16H03912
We have studied far-infrared coherent radiation with an S-band linac at Laboratory for Electron Beam Research and Application (LEBRA) at Nihon University. We have already developed a couple of terahertz-wave sources based on coherent synchrotron radiation and coherent transition radiation*, which have been applied to spectroscopic research**. Moreover, we developed coherent edge radiation (CER) at the downstream bending magnets in the FEL sections. Because the edge radiation has an annular shape distribution characterized by the asymmetric first-order Laguerre-Gaussian mode, the CER can be extracted from an optical cavity of the FEL system without a diffraction loss of the FEL beam***. The root-mean-squared bunch length of the electron beam was evaulated by measuring the CER spectra, which was about the same level as the FEL micropulse width. Although the infrared FELs at LEBRA had a long slippage length, the CER intensity can be a guidepost enhancing the FEL power because of the existence of their correlation. In this presentation, the characteristics of the CER including correlation between the CER and the FEL will be reported.
* N. Sei et al., Jpn. J. Appl. Phys. 56, (2017) 032401.
** N. Sei et al., J. Opt. Soc. Am. B, 31, (2014) 2150.
*** N. Sei et al., Phys. Lett. A in press.
DOI • reference for this paper ※  
About • paper received ※ 19 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPRB040 Development of Coherent Terahertz Wave Sources and Transport Systems at LEBRA Linac 1775
  • T. Sakai, K. Hayakawa, Y. Hayakawa, K. Nogami, Y. Sumitomo, T. Tanaka
    LEBRA, Funabashi, Japan
  • H. Ogawa, N. Sei
    AIST, Tsukuba, Ibaraki, Japan
  Funding: This work was supported by JSPS KAKENHI (Grant-in-Aid for Young Scientists (B)) Grant Number JP16K17539 and JP16H03912.
Development of a 125 MeV S-band electron linac for the generation of Free Electron Laser (FEL), Parametric X-ray Radiation (PXR) and coherent terahertz waves (THz waves) has been underway at LEBRA of Nihon University as a joint research with KEK and National Institute of Advanced Industrial Science and Technology (AIST). The high power coherent transition radiation (CTR), coherent edge radiation (CER) and the coherent synchrotron radiation (CSR) wave sources development has been carried out since 2011 at LEBRA. The transport systems of the each THz wave were installed in the vacuum chamber on the downstream side of the 45 degrees bending magnet of the PXR and FEL beam-line. In particular, a CER of the generated the FEL beam line can also be guided without disturbing the FEL oscillations. Additionally, a part of the mirror of the transport optical system is constructed using Indium Tin Oxide (ITO) mirror with the optimized for the transport of the THz wave. In this report, construction of the THz transport beam lines and the property of the THz lights are discussed.
DOI • reference for this paper ※  
About • paper received ※ 19 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)