Author: Tamura, R.
Paper Title Page
MOPMP009 Effect of Initial Parameters on the Super Flat Beam Generation with the Phase-Space Rotation for Linear Colliders 442
  • M. Kuriki, R. Tamura
    HU/AdSM, Higashi-Hiroshima, Japan
  • H. Hayano, X.J. Jin, T. Konomi, Y. Seimiya, N. Yamamoto
    KEK, Ibaraki, Japan
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • J.G. Power
    ANL, Argonne, Illinois, USA
  • K. Sakaue
    The University of Tokyo, The School of Engineering, Tokyo, Japan
  • M. Washio
    RISE, Tokyo, Japan
  Funding: This work is partly supported by Japan-US Cooperative grant for scientific studies, Grant aid for scientific study by MEXT Japan (KAKENHI) Kiban B.
Linear collider is a concept to realize e+e collision beyond the limitation of the ring colliders by the synchrotron radiation. To obtain an enough luminosity, eg. 1.0·10+34 cm-2sec-1, the beam is focused down to nano-meter size with a high aspect ratio. This super flat beam is useful to improve the luminosity and to compensate the beam-beam effect, eg. Beamstrahlung. In a conventional design, the super-flat beam is produced by radiation damping in a storage ring. We propose to produce this super-flat beam with phase-space rotation techniques. We employ both Round to Flat Beam Transformation and Transverse to Longitudinal Emittance eXchange, the super flat beam can be generated by controlling the space-charge effect which spoiled the performance. We present the RFBT performance with respect to the initial conditions, i.e. beam size, initial emittance, solenoid field (strength and profile), etc.
DOI • reference for this paper ※  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)