MC3: Novel Particle Sources and Acceleration Techniques
T01 Proton and Ion Sources
Paper Title Page
TUPTS001 Improvements in Rf Multi Cusp Negative Ion Source 1928
 
  • A.M. George, M.P. Dehnel, S.V. Melanson, D.E. Potkins, T.M. Stewart
    D-Pace, Nelson, British Columbia, Canada
  • N. Broderick
    University of Auckland, Auckland, New Zealand
  • Y. Shimabukuro
    Doshisha University, Graduate School of Engineering, Kyoto, Japan
 
  D-Pace’s 13.56 MHz Radio Frequency (RF) multi cusp negative ion source uses an Aluminium Nitride (AlN) dielectric window for coupling RF power from an external antenna to the plasma chamber. Ion source operation was limited to low RF power (< 3500 W) due to failures (cracks) occurring on the window during experiments. Such events can cause damages to the vacuum system and plasma chamber. The current work deals with simulations performed on the ion source to study the factors leading to the failure of the window. Based on results from the simulations, a new design was introduced. The improved design yielded positive results in terms of source performance and stability of the AlN window.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS001  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS004 Development of a Penning Ion Source Test Stand for Production of Alpha Particles 1932
TUPTS002   use link to see paper's listing under its alternate paper code  
 
  • N. Savard
    UBC, Vancouver, B.C., Canada
  • M.P. Dehnel, P.T. Jackle, S.V. Melanson, D.E. Potkins, J.E. Theroux
    D-Pace, Nelson, British Columbia, Canada
  • G. M. Marcoux
    Carleton University, College of Natural Sciences, Ottawa, Ontario, Canada
 
  Medical cyclotron manufacturers are seeking less-costly and more compact ion sources than Electron Cyclotron Resonance Ion Sources (ECRIS) for alpha particle production, which are currently capable of generating beam currents up to 2 mA at energies of 30 keV for axial injection into these cyclotrons. Penning Ion Sources by comparison are relatively old technologies mostly used for cheap singly-charged ion production. However, these ion sources have been used in the past for high-current multiply-charged state ion production of heavy ions up to a few mA of current, and are much smaller, cheaper, and less complex than ECRISs. Therefore, we are developing a Penning Ion source test stand to produce high-current alpha-particles for medical cyclotrons. This requires designs and simulations of all the primary components of the ion source. This system will be used to fully characterize the output beam current and internal plasma properties as a function of varying gas pressure, ion source geometries, magnetic field strength, arc voltage/current, and material properties. The result will be a source optimized for maximum alpha particle beam currents, to be used as a prototype for a commercial Penning Ion Source.
* J. Bennet. A Review of PIG Sources for Multiply Charged Heavy Ions. IEEE Transactions on Nuclear Science, 1972.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS004  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS005 Advanced Beam Transport Solutions for ELIMAIA: A User Oriented Laser-Driven Ion Beamlines 1936
 
  • F. Schillaci, D. Margarone, V. Scuderi
    ELI-BEAMS, Prague, Czech Republic
  • L. Andò, G.A.P. Cirrone, G. Cuttone, G. Milluzzo, J. Pipek, F. Romano, A.D. Russo
    INFN/LNS, Catania, Italy
  • M. Maggiore
    INFN/LNL, Legnaro (PD), Italy
 
  Laser-target acceleration represents a promising alternative to standard accelerators for several potential applications, especially medical ones, but some extreme features make laser-driven ion beams not directly usable. Therefore, a large effort has been recently devoted to development of beam-transport solutions to obtain controlled and reproducible beams. In this framework, a collaboration has been established between INFN-LNS (IT) and Eli-Beamlines-IoP (CZ) to realize a complete transport beam-line, named ELIMED, dedicated to the transport, diagnostics and dosimetry of laser-driven ion beams. The transport beamline is made by three sections: a set of high field gradient permanent magnet quadrupoles with large acceptance is used to collect and inject ions in the selection section; a magnetic chicane made of C-shaped resistive dipoles is able to select beams with high resolution and to work as an active energy modulator. The final beam shaping is done by two resistive quadrupoles. In this contribution the status of the beamline is described together with the tests performed with conventional accelerators at INFN-LNS. Feasibility study of possible upgrades are also reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS005  
About • paper received ※ 15 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS050 Design and Analysis of the Cold Cathode Ion Source for 200 MeV Superconducting Cyclotron 2040
SUSPFO077   use link to see paper's listing under its alternate paper code  
 
  • S.W. Xu
    USTC, Hefei, Anhui, People’s Republic of China
  • L. Calabretta
    INFN/LNS, Catania, Italy
  • G. Chen, M. Xu
    ASIPP, Hefei, People’s Republic of China
  • O. Karamyshev, G.A. Karamysheva, G. Shirkov
    JINR, Dubna, Moscow Region, Russia
 
  SC200 is a superconducting isochronous cyclotron which generates 200 MeV, 400 nA proton beam for particle therapy. The cold-cathode-type Penning ion gauge (PIG) ion source for the internal ion source of SC200 has been selected as an alternative and preliminary designed. In this paper, design of ion source and test bench are demonstrated. Currently, the properties of ion source have been simulated for a variety of electric field distributions and magnetic field strengths. The secondary electron emission in electromagnetic field has been simulated. It provides reference for the optimization design of arc chamber. In addition, the sample of cold-cathode-type ion source has been tested on the test bench and extracted beam intensity has been measured over 200 μA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS050  
About • paper received ※ 30 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS071 H+ and H Ion Beam Injectors at LANSCE: Beam Production Status and Planned Injector Upgrades 2087
 
  • I.N. Draganic, D. Kleinjan, G. Rouleau
    LANL, Los Alamos, New Mexico, USA
 
  The Los Alamos Neutron Science Center operates with two 750 keV Cockcroft-Walton accelerators for simultaneous injection of H+ and H ion beams into a 800 MeV linear accelerator. The proton ion beam is produced using a duoplasmatron source and the H ion beam is formed with a cesiated, multi-cusp-field, surface converter ion source. An overview of ion injector status, recent low energy beam transport line optimizations and ion source performance improvements will be presented. To reduce long term operational risks and to improve existing LANSCE beam production for all facility users, new injector upgrades are underway: 1) replacing the H+ CW injector with a Radio-Frequency Quadruple accelerator and 2) increasing H ion beam brightness and extending source lifetime using the novel SNS RF negative ion source. The status of upgrade projects will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS071  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)