MC5: Beam Dynamics and EM Fields
D04 Beam Coupling Impedance - Theory, Simulations, Measurements, Code Developments
Paper Title Page
MOPGW001 Design Review of Bellows RF-Shielding Types and New Concepts for Sirius 53
 
  • H.O.C. Duarte, P.P.S. Freitas, A.R.D. Rodrigues, R.M. Seraphim, T.M. da Rocha
    LNLS, Campinas, Brazil
 
  Large amounts of bellows in an accelerator justify the importance of simplifying the machining and assembling processes of their RF shield. Such quantity also makes this component one of the main contributors for a machine impedance budget. On the other hand, low impedance designs tend to complicate the mechanical aspects. Applied to Sirius round vacuum chamber of 24 mm inner diameter, the omega-strip and comb-type bellows concepts are compared with new proposed designs. In such comparison, the aforementioned aspects, wakefield losses and prototyping experiences are presented in this work.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW001  
About • paper received ※ 16 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW002 Longitudinal Kicker Design for Sirius Light Source 57
 
  • H.O.C. Duarte, A. Barros
    LNLS, Campinas, Brazil
 
  An overloaded cavity kicker for the Sirius longitudinal bunch-by-bunch feedback system will be presented in this contribution. 4th generation light sources’ lower aperture of vacuum chambers lead to higher cutoff frequencies, jeopardizing the electromagnetic performance of cavities by trapping higher order modes (HOMs) inside the structure. With the objective of damping longitudinal and transverse HOMs without compromising the kicker shunt impedance, solutions as cavity radius reduction, tapered transitions and other geometry changes are discussed herein.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW002  
About • paper received ※ 15 May 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW035 Coupling Impedance of the Collimator Without RF-Shields at the RCS in J-PARC 163
 
  • Y. Shobuda, J. Kamiya, K. Moriya, K. Okabe
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  All holes on the chamber walls of synchrotrons should be filled with the radiofrequency (RF)-shields to suppress coupling impedances that excite beam instabilities. In a synchrotron, titanium nitride (TiN)-coated RF-shields are installed with collimators. If the holes, through which the collimator jaw enters and exits the chamber, are filled with such RF-shields, the shields may break down as the dynamic coefficient of TiN increases in vacuum. At the Rapid Cycling Synchrotron (RCS), the RF-shields are eliminated from the collimator after demonstrating that the effect due to the RF-shields is negligible on the impedance at low frequencies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW035  
About • paper received ※ 28 April 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW036 Studies on Coherent Multi-Bunch Tune Shifts with Different Bunch Spacing at the J-PARC Main Ring 167
 
  • A. Kobayashi, S. Igarashi, Y. Sato, T. Shimogawa, Y. Sugiyama, T. Toyama, M. Yoshii
    KEK, Tokai, Ibaraki, Japan
 
  At a high-power proton synchrotron, betatron tune shifts induced by space charge effects cause beam loss which limits the beam intensity. To achieve further high beam intensity at the main ring of the Japan Proton Accelerator Research Complex, precise control of the tune shift is indispensable. When carrying out multi-bunch measurements, we observed that the dependence of the tune shift intensity on the number of bunches follow opposite slope trends for the horizontal and vertical directions. The influence of the bunch spacing was also observed. We report on a simplified tune shift model reconstruction for understanding the origin of these phenomena and present a correction of the tune shifts for reducing beam loss up to 30 %.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW036  
About • paper received ※ 01 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW038 Collimator’s Impact Into the Transverse Emittance Growth at KEK Compact ERL 174
 
  • O. A. Tanaka, T. Miyajima, N. Nakamura, T. Obina, M. Shimada, Y. Tanimoto
    KEK, Ibaraki, Japan
 
  In high-intensity particle accelerators, unwanted trans-verse and longitudinal wakefields arise when the high-charge particle beam passes through the narrow chambers or locations with small transverse apertures, such as collimator jaws. Transverse wakefields impose a transverse kicks to the beam, changing its shape, and leading to the growth of the transverse emittance. Longitudinal wakes cause the beam energy losses, heating of the narrow chambers etc. In the present study we investigated the collimator’s impact to the beam. Thus, we evaluated the collimator’s wakefields through the CST simulations. We estimated the corresponding transverse kicks and longitudinal wakes. In the summary simulation results were cross-checked with correspondent analytical expressions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW038  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW066 Local Impedance Measurements Using the Orbit Bump Method at ALBA 240
 
  • Z. Martí, G. Benedetti, T.F.G. Günzel, U. Iriso
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The orbit bump technique has been used at the ALBA Storage Ring to characterize with good precision the impedance of single machine elements, like the in-vacuum undulators or the CLIC stripline kicker. The results are compared with theoretical studies, as well as impedance measurements done at ALBA using other methods like the turn by turn betatron phase or from the analysis of the detuning slopes of the Transverse Mode Coupling Instability.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW066  
About • paper received ※ 14 May 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW071 Resistive Wall Effects in the CLIC Beam Delivery System 258
 
  • D. Arominski, A. Latina, D. Schulte
    CERN, Meyrin, Switzerland
 
  Resistive wall wakefields are an important issue to study for future linear colliders. Wakefields in the Beam Delivery System (BDS) might cause severe multi-bunch effects, leading to beam quality and luminosity losses. The resistive wall effects depend on the beam pipe apertures and materials, which are optimised to limit the impact on the beam. This paper presents a study of this problem for the 380 GeV and 3 TeV beam parameters and optics of the Compact Linear Collider’s BDS. First, the optimisation of the beam pipe apertures to limit the impact of resistive wall effect on the beam quality is shown, then the luminosity and its quality are presented. Finally, the proposed design parameters are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW071  
About • paper received ※ 16 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW074 New Spiral Beam Screen Design for the FCC-hh Injection Kicker Magnet 270
SUSPFO096   use link to see paper's listing under its alternate paper code  
 
  • A. Chmielinska, M.J. Barnes
    CERN, Geneva, Switzerland
 
  The injection kicker system for the Future Circular Collider (FCC-hh) must satisfy demanding requirements. To achieve low pulse ripple and fast field rise and fall times, the injection system will use ferrite loaded transmission line type magnets. The beam coupling impedance of the kicker magnets is crucial, as this can be a dominant contribution to beam instabilities. In addition, interaction of the high intensity beam with the real part of the longitudinal beam coupling impedance can result in high power deposition in the ferrite yoke. This gives a significant risk that the ferrite yoke will exceed its Curie temperature: hence, a suitable beam screen will be a critical feature. In this paper, we present a novel concept - a spiral beam screen. The fundamental advantage of the new design is a significant reduction of the maximum voltage induced on the screen conductors, thus decreased probability of electrical breakdown. In addition, the longitudinal beam coupling impedance is optimized to minimize power deposition in the magnet.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW074  
About • paper received ※ 26 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW076 Verification by RF Measurements of New HOM Mitigation Scheme Developed for Future SPS 33-Cell Accelerating Structures 274
 
  • P. Kramer, A. Farricker, C. Vollinger
    CERN, Geneva, Switzerland
 
  Longitudinal higher-order modes (HOMs) at a frequency of around 630 MHz in the 200 MHz travelling wave RF structures currently limit the beam intensities in the CERN SPS to less than that required by the High Luminosity (HL-) LHC. In the framework of the LHC Injectors Upgrade (LIU) project, the performance of the already existing HOM damping scheme for these standing wave modes must be improved. This involves improving the existing HOM-couplers as well as the possible use of a new mitigation technique via the insertion of resonant posts in some cells of the multi-cell structures. The development of the new damping scheme has been performed using theoretical analysis of the cavity-coupler interaction in conjunction with full-wave electromagnetic (EM) field simulations. This contribution will show the verification of the improved HOM damping performance by measurements on a single section with 11 cells and on the future 33-cell structures. The parasitic impact of the damping scheme on the travelling wave fundamental passband (FPB) will also be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW076  
About • paper received ※ 11 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW077 Impedance Reduction in the CERN SPS Through Element Layout Optimisation 277
 
  • A. Farricker, C. Vollinger
    CERN, Geneva, Switzerland
 
  The CERN accelerator complex is currently in its long shutdown while the LHC Injector Upgrade is being carried out. The upgrade of the SPS includes but is not limited to: the relocation of the beam dumping system, upgrade of the RF system, replacement of the electrostatic septa and impedance reduction. These major upgrades present an opportunity to perform additional impedance reduction in areas not normally modified due to the large amount of work being performed across the accelerator complex. In this paper, we look at the impedance minimization in the sections near the large aperture quadrupoles of the extraction regions in the CERN SPS. By optimizing the locations of existing equipment and the introduction of a new, more impedance optimised type of bellows, significant reductions in the beam-coupling impedance can be achieved.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW077  
About • paper received ※ 08 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW122 Beam-based Measurement of Broadband Longitudinal Impedance at NSLS-II 400
 
  • V.V. Smaluk, B. Bacha, G. Bassi, A. Blednykh
    BNL, Upton, Long Island, New York, USA
 
  Funding: Department of Energy Contract No. DE-SC0012704
Interaction of a particle beam with the vacuum chamber impedance is one of the main effects limiting the beam intensity in accelerators. Minimization of the impedance is an essential part of the vacuum chamber design for any new accelerator project. The impedance can be estimated experimentally by measuring beam dynamics effects caused by the beam-impedance interaction. Experience obtained at many accelerator facilities shows the beam-based measurements are often different from the pre-computed impedance budgets, the discrepancy of a factor of two or even more is not unusual. The measurements of broadband longitudinal impedance carried out at NSLS-II are discussed in comparison with the numerically simulated impedance budget.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW122  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW128 Simulation and Analysis of Wake Fields and Trapped RF Modes in Insertion Device Vacuum Chambers at the Canadian Light Source 414
 
  • E. J. Ericson, D. Bertwistle, M.J. Boland
    CLS, Saskatoon, Saskatchewan, Canada
  • M.J. Boland, M. Castillo Sosa
    University of Saskatchewan, Saskatoon, Canada
  • D. Pelz
    RFS, Kilsyth, Australia
 
  Funding: CFI, NSERC, NRC, CIHR, the Province of Saskatchewan, WD, WESTGRID, Compute Canada, and the University of Saskatchewan
The Canadian Light Source (CLS) synchrotron operates with four in-vacuum insertion devices, three in-vacuum undulators, and one in-vacuum wiggler. Presently, each of the devices occupies half of a straight section. The wiggler is unique in our ring as it is both in-vacuum and shares a straight section with an in-vacuum undulator. We have observed gap dependent beam instabilities in the undulator located in the straight section. In order to better understand the problem, the cause of the instabilities was investigated using 3D electromagnetic modelling. First, the ’trapped’ RF modes (natural resonances) for this undulator chamber, their Q value, and their peak frequencies were analysed using Eigenmode simulation. Secondly, beam excitation of the Eigenmodes was simulated with the Wakefield solver. Herein we present the results of this electromagnetic modelling.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW128  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZZPLS2 Beam Dynamics, Injection and Impedance Studies for the Proposed Single Pulsed Nonlinear Injection Kicker at the Australian Synchrotron 1219
 
  • R. Auchettl, R.T. Dowd, Y.E. Tan
    AS - ANSTO, Clayton, Australia
 
  The Australian Synchrotron are currently investigating the use of a single pulsed nonlinear injection kicker (NLK) to free floor space within the ring for future beamline development. The NLK has a zero and flat magnetic field at the stored beam to leave the stored beam undisturbed but has a maximum field off-axis where the injected beam is located. After the kick, the injected beam is stored. While NLKs have been prototyped at many facilities around the world, injection efficiency and heat loading have been the main impediment to deployment of the NLK. The wakefields that pass through the ceramic chamber aperture can cause severe heat loading and impedance. Despite achieving impressive injection efficiencies, a previous prototype at BESSY II * showed that strong interactions of the stored beam resulted in high heat load causing the thin 5µm Titanium coated ceramic chamber to reach temperatures > 500 °C and fail. To avoid beam induced heat loads, this paper presents studies of the wake impedance and thermal behaviour for our proposed NLK design. Injection simulations and future considerations for installation and operation at the Australian Synchrotron will be discussed.
* T. Atkinson et al., "Development of a non-linear kicker system to facilitate a new injection scheme for the Bessy II storage ring", in Proc. IPAC’11, 2011, THPO024, pp. 3394-3396.
 
slides icon Slides TUZZPLS2 [1.588 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUZZPLS2  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZZPLS3 New Method of Calculation of the Wake due to Radiation and Space Charge Forces in Relativistic Beams 1223
 
  • G. Stupakov
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the Department of Energy, Contract No. DE-AC02-76SF00515.
Radiation reaction force in a relativistic beam, also known as a CSR wakefield, is often computed using a 1D model of a line charge beam. While this model can serve as a useful tool for a quick calculation, in some cases, it may not be sufficiently accurate. In particular, this model misses the so-called compression effects associated with the change of the electromagnetic energy when the beam is compressed longitudinally or transversely. The existing 3D simulation codes that take this effect into account are often slow and are not easy to use. In this work, we propose a new approach to the calculations of radiation and space charge longitudinal forces based on the use of the integrals for the retarded potentials. Our main result expresses the rate of change of particles energy through 2D (in a 2D model) or 3D integrals for a given orbit of the beam. It generalizes the 1D model and includes the transient effects of at the entrance and the exit from the magnet. For a given beam line with known magnetic lattice, and a known distribution function of the beam, the calculation reduces to taking 2D or 3D integrals along the orbit.
 
slides icon Slides TUZZPLS3 [2.080 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUZZPLS3  
About • paper received ※ 29 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYPLS1 Building the Impedance Model of a Real Machine 2249
 
  • B. Salvant, D. Amorim, S. A. Antipov, S. Arsenyev, M.S. Beck, N. Biancacci, O.S. Brüning, J.V. Campelo, E. Carideo, F. Caspers, A. Farricker, A. Grudiev, T. Kaltenbacher, E. Koukovini-Platia, P. Kramer, A. Lasheen, M. Migliorati, N. Mounet, E. Métral, N. Nasr Esfahani, S. Persichelli, B.K. Popovic, T.L. Rijoff, G. Rumolo, E.N. Shaposhnikova, V.G. Vaccaro, C. Vollinger, N. Wang, C. Zannini, B. Zotter
    CERN, Geneva, Switzerland
  • D. Amorim
    Grenoble-INP Phelma, Grenoble, France
  • T. Dalascu
    EPFL, Lausanne, Switzerland
  • M. Migliorati
    Sapienza University of Rome, Rome, Italy
  • R. Nagaoka
    SOLEIL, Gif-sur-Yvette, France
  • V.V. Smaluk
    BNL, Upton, Long Island, New York, USA
  • B. Spataro
    INFN/LNF, Frascati, Italy
  • N. Wang
    IHEP, Beijing, People’s Republic of China
  • S.M. White
    ESRF, Grenoble, France
 
  A reliable impedance model of a particle accelerator can be built by combining the beam coupling impedances of all the components. This is a necessary step to be able to evaluate the machine performance limitations, identify the main contributors in case an impedance reduction is required, and study the interaction with other mechanisms such as optics nonlinearities, transverse damper, noise, space charge, electron cloud, beam-beam (in a collider). The main phases to create a realistic impedance model, and verify it experimentally, will be reviewed, highlighting the main challenges. Some examples will be presented revealing the levels of precision of machine impedance models that have been achieved.  
slides icon Slides WEYPLS1 [5.648 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEYPLS1  
About • paper received ※ 10 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS101 A General Comparison on Impedance Theory and CST Simulation of Discontinuities 3352
 
  • N. Khosravi, E. Ahmadi, M. Akhyani, S. Dastan, A.M. Mash’al
    ILSF, Tehran, Iran
  • H. Karimi
    Isfahan University of Technology, Isfahan, Iran
 
  Inhomogeneity of vacuum chamber components is the main source of coupling impedance. Nowadays, wake potential is mostly predictable by 3D codes. Analytical prediction of impedance theories can be helpful as a side solution. On the other hand, some asymmetries in the geometry of components might make troubles and lead to imprecise numerical results in 3D simulations. Analytical approximation of discontinuities, holes, and grooves can give us an estimation of expected results and can be used as a benchmark in the case that we do not have any experimental data. To clarify the validity of theoretical expressions, general discontinuities are simulated in CST. The comparison of final results is presented here. At last, resistive wall impedance and some general discontinuities of components at ILSF storage ring are compared from the theoretical and simulation point of view.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS101  
About • paper received ※ 01 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)