MC5: Beam Dynamics and EM Fields
D11 Code Developments and Simulation Techniques
Paper Title Page
WEPRB113 Toolbox for Optimization of RF Efficiency for Linacs 3074
 
  • J. Ögren, A. Latina, D. Schulte
    CERN, Meyrin, Switzerland
 
  We present a toolbox for optimizing the rf efficiency for linacs and as an example we use it to re-optimize the Compact Linear Collider booster linac. We have implemented a numerical model of a SLED-type pulse compressor that can generate a single or a double pulse. Together with the CERN CLICopti library, an RF structure parameter estimator, we created the toolbox which enables thorough optimizations of linacs in terms of RF efficiency, beam stability, and cost simultaneously, via a simple and concise Octave script. This toolbox was created for the optimization of X-band-based linacs, however it can also be used at lower frequencies, e.g. in the S- and in the C- bands of frequencies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB113  
About • paper received ※ 06 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS006 Modelization of an Injector With Machine Learning 3096
 
  • M. Debongnie, M.A. Baylac, F. Bouly
    LPSC, Grenoble Cedex, France
  • N. Chauvin, D. Uriot
    CEA-IRFU, Gif-sur-Yvette, France
  • A. Gatera
    SCK•CEN, Mol, Belgium
  • T. Junquera
    Accelerators and Cryogenic Systems, Orsay, France
 
  Modern particle accelerator projects, such as MYRRHA, have very high stability and/or reliability requirements. To meet those, it is necessary to optimize or develop new methods for the control systems. One of the difficulties lies in the relatively long computation time of current beam dynamics codes. In this context, the very low computation time of neural network is of great attraction. However, a neural network has to be trained in order to be of any use. The training of a beam dynamic predictor uses a large dataset (experimental or simulated) that represents the dynamics over the parameter space of interest. Therefore, choosing the right training dataset is crucial for the quality of the neural network predictions. In this work, a study on the sampling choice for the training data is performed to train a neural network to predict the transmission of a beam through a low energy beam transport line and a Radiofrequency Quadrupole. We show and discuss the results obtained on training data set to model the IPHI and MYRRHA injectors.
https://myrrha.be/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS006  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS017 Synchrotron Radiation Module in OCELOT Toolkit 3127
 
  • S. Tomin, G. Geloni
    EuXFEL, Hamburg, Germany
 
  Synchrotron radiation (SR) sources based on single-pass accelerators (e.g. linacs, plasma accelerators) have to cope with electron beams with a rather complicated phase space distribution. In this case, the convolution method usually employed to calculate radiation properties can give poor accuracy or be not applicable at all. Moreover, dynamical effects can also play a role in the emission mechanism. This happens when the beam parameters (e.g. beam current) significantly change during the passage through the undulator. In this work, we present a dedicated SR module of the OCELOT toolkit, which is well suited to deal with these situations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS017  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS020 Development of 6D Particle Tracking Code for Particle Therapy System 3138
 
  • Y. Nakashima, K. Miyata
    Hitachi Ltd., Ibaraki-ken, Japan
 
  For achieving required specifications of a particle therapy system such as beam profile and beam current, it is important to tune system operation parameters to appropriate values before commissioning. We are developing 6d particle tracking code to analyze whole the through beam motion in a synchrotron from multiturn injection to the RF-knock out extraction for the precise tuning. The code includes effects of multipole magnetic fields and space charge effect. We report on the implementation of the code and discuss about the simulation results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS020  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS025 MiniScatter, a Simple Geant4 Wrapper 3152
 
  • K.N. Sjobak, H. Holmestad
    University of Oslo, Oslo, Norway
 
  Funding: Research Council of Norway, project 255196
In order to estimate what happens to particle beams when they hit windows, gas, and various other targets, a simple tool has been developed based on Geant4. This tool wraps geometry setup, primary beam generation from Twiss parameters, visualization, and automatic analysis and plots in a simple-to-use command-line tool. Furthermore, a Jupyter-friendly Python interface for running simulations and parallelized parameter scans is included. The code, its interface, and a few selected examples will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS025  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS026 Generalised Scattering Module in SixTrack 5 3156
 
  • K.N. Sjobak
    University of Oslo, Oslo, Norway
  • H. Burkhardt, R. De Maria, V.K.B. Olsen
    CERN, Geneva, Switzerland
 
  Funding: Research Council of Norway, project 255196, and HL-LHC WP8
A generalised scattering module has recently been added to SixTrack. This module enables the use of arbitrary generators and target profiles. Presently, a simple model of elastic scattering and a coupling to Pythia8 have been implemented. This makes it possible to use SixTrack for studies of aperture losses and beam lifetime as a result of beam–beam scattering.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS026  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS028 Transverse-Longitudinal Coupling for Harmonic Generation and Bunch Length Manipulation 3160
SUSPFO055   use link to see paper's listing under its alternate paper code  
 
  • X.J. Deng, W.-H. Huang, C.-X. Tang, Y. Zhang
    TUB, Beijing, People’s Republic of China
  • A. Chao
    SLAC, Menlo Park, California, USA
 
  A general harmonic generation and bunch length manipulation scheme using transverse-longitudinal coupling is presented. The method makes use of the freedom in projecting the three beam eigen-emittances into different physical dimensions. A realization of this coupling lattice, a PEHG variant, is given as an example. For the purpose of harmonic generation and bunch compression, this method is advantageous when the transverse emittance is small. The combination with sawtooth waveform modulation is proposed to boost the bunching further. Transverse-longitudinal coupling in storage rings are briefly discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS028  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS029 The Synchronization between BPMs and Corrector Power Supplies in AC Mode of RCS of CSNS 3164
 
  • M.T. Li
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • Y.W. An, S. Wang, S.Y. Xu
    IHEP, Beijing, People’s Republic of China
  • S.Y. Xu
    DNSC, Dongguan, People’s Republic of China
 
  This paper introduces our effort for synchronizing BPMs and Corrector Power Supplies in AC mode of RCS of CSNS. This work helps to increase the accuracy of the response matrix measurement, the obit correction, and other commissioning task.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS029  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS033 A High-performance Code for Beam Dynamics Simulation of Synchrotrons 3170
 
  • H.J. Yao, X. Guan, G.R. Li, P.F. Ma, X.W. Wang, Q. Zhang, S.X. Zheng
    TUB, Beijing, People’s Republic of China
 
  This paper introduces a high-performance code Li-track for beam dynamics simulation of synchrotrons. It is a parallel multi-particle tracking program written entirely in C++ and therefore has a high computational speed. The overall design of Li-track is based on object-oriented mode, and the implemented element model can be easily reused to build different synchrotron lattice. The symplectic integral algorithm is used to ensure there are no physical errors in a long-term simulation. This code has been used for the slow extraction simulation of XiPAF synchrotron and the results will be given in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS033  
About • paper received ※ 30 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS037 DC Beam Space-Charge Modeling for OpenXAL 3177
SUSPFO092   use link to see paper's listing under its alternate paper code  
 
  • B.E. Bolling, N. Milas
    ESS, Lund, Sweden
 
  OpenXAL is an open source multi-purpose accelerator physics software platform based on a pure Java open source development environment used for creating accelerator physics applications, scripts and services. Currently, the software has been used with an ellipsoidal (bunched) beam to account for space-charge effects. Applications developed so far for ESS, such as the Virtual Machine for the ESS Low Energy Beam Transport (LEBT) section, would profit from a DC beam description. In this paper, the space-charge component for a continuous beam is derived taking into account beams with different transverse charge distributions (uniform, gaussian, etc). The implementation in OpenXAL and a comparison with other simulation codes is also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS037  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS038 New RFQ and Field Map Model for the ESS Linac Simulator 3181
 
  • J.F. Esteban Müller, E. Laface
    ESS, Lund, Sweden
 
  The Java ESS Linac Simulator (JELS) is an extension of the Open XAL online model that is a fundamental part of the accelerator control system. The model is used by high-level physics applications for commissioning, tuning, and machine development activities at the European Spallation Source (ESS). This paper summarizes the upgrades done to JELS during the last year. An RFQ model is under development. The RFQ was the only element of the linac missing in the online model. The electromagnetic field map model has been refactored to ease implementation of new elements (rf cavities and magnets), and to allow the superposition of more than one field map and other elements. Further improvements have also been done in the treatment of corrector magnets and space charge for continuous beam in the Low-Energy Beam Transport (LEBT). Finally, the machine description can now include arbitrary aperture definitions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS038  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS043 SixTrack Version 5: Status and New Developments 3200
 
  • R. De Maria, J. Andersson, L. Field, M. Giovannozzi, P.D. Hermes, N. Hoimyr, G. Iadarola, S. Kostoglou, E.H. Maclean, E. McIntosh, A. Mereghetti, J. Molson, V.K.B. Olsen, D. Pellegrini, T. Persson, M. Schwinzerl
    CERN, Geneva, Switzerland
  • B. Dalena, T. Pugnat
    CEA-IRFU, Gif-sur-Yvette, France
  • K.N. Sjobak
    University of Oslo, Oslo, Norway
  • I. Zacharov
    EPFL, Lausanne, Switzerland
 
  SixTrack Version 5 is a major SixTrack release that introduces new features, with improved integration of the existing ones, and extensive code restructuring. New features include dynamic-memory management, scattering-routine integration, a new initial-condition module, and reviewed post-processing methods. Existing features like on-line aperture checking and Fluka-coupling are now enabled by default. Extensive performance regression tests have been developed and deployed as part of the new-release generation. The new features of the tracking environment developed for the massive numerical simulations will be discussed as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS043  
About • paper received ※ 17 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS045 High-Performance Scheduling of Multi-Beam Multi-Bunch Simulations 3208
 
  • S.V. Furuseth, X. Buffat
    CERN, Geneva, Switzerland
  • S.V. Furuseth
    EPFL, Lausanne, Switzerland
 
  Coherent multi-bunch interactions through beam-beam forces or wake fields can cause severe impacts on the beams in circular colliders, if not well understood and countered for. COMBI is a parallel multiparticle tracking code developed to study such interactions. Its implementation greatly limits its efficiency when considering realistic configurations featuring effects with different computational requirements, such as the multi-bunch interaction through wake fields, beam-beam interactions, transverse feedback and lattice non-linearities. A new parallel scheduling method, pipelining the effects for each bunch, has greatly sped up the code. The new version of the code, COMBIp, is presented here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS045  
About • paper received ※ 06 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS048 Electron Beam Dynamics Simulation for Electron Lenses 3220
 
  • S. Sadovich, A. Rossi
    CERN, Meyrin, Switzerland
  • G. Stancari
    Fermilab, Batavia, Illinois, USA
 
  A test stand is under construction at CERN to study high perveance electron guns, electron beam dynamics, and electron beam diagnostics for electron lenses. It will be used to test electron guns for the Hollow Electron Lenses under consideration for beam halo control for High Luminosity LHC (CERN), and for the Space Charge Compensation at SIS18 (GSI) in the frame of the EU funded ARIES project. In order to prepare for this test stand, simulations will be presented and compared with experiments undertaken at the Fermilab (FNAL) electron lens test stand. These were conducted using a hollow electron gun, with the magnetic field configuration and beam current varied to study their effect. The impact of imperfections on the beam dynamics and overall quality of the electron beam will be discussed. A method for comparing experimental data with simulation is also presented to allow bench-marking of the computer models and simulation tools that will later be applied to the analysis of measurements performed at CERN.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS048  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS054 Pyg4ometry : A Tool to Create Geometries for Geant4, BDSIM, G4Beamline and FLUKA for Particle Loss and Energy Deposit Studies 3244
 
  • S.T. Boogert, A. Abramov, J. Albrecht, G. D’Alessandro, L.J. Nevay, W. Shields, S.D. Walker
    JAI, Egham, Surrey, United Kingdom
 
  Studying the energy deposits in accelerator components, mechanical supports, services, ancillary equipment and shielding requires a detailed computer readable description of the component geometry. The creation of geometries is a significant bottleneck in producing complete simulation models and reducing the effort required will provide the ability of non-experts to simulate the effects of beam losses on realistic accelerators. The paper describes a flexible and easy to use Python package to create geometries usable by either Geant4 (and so BDSIM or G4Beamline) or FLUKA either from scratch or by conversion from common engineering formats, such as STEP or IGES created by industry standard CAD/CAM packages. The conversion requires an intermediate conversion to STL or similar triangular or tetrahedral tessellation description. A key capability of pyg4ometry is to mix GDML/STEP/STL geometries and visualisation of the resulting geometry and determine if there are any geometric overlaps. An example conversion of a complex geometry used in Geant4/BDSIM is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS054  
About • paper received ※ 19 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS058 BDSIM: Recent Developments and New Features Beyond V1.0 3259
 
  • L.J. Nevay, A. Abramov, J. Albrecht, S. E. Alden, S.T. Boogert, H. Garcia Morales, S.M. Gibson, W. Shields, S.D. Walker
    JAI, Egham, Surrey, United Kingdom
  • J. Snuverink
    PSI, Villigen PSI, Switzerland
 
  BDSIM is a program that creates a 3D model of an accelerator from an optical beam line description using a suite of high energy physics software including Geant4, CLHEP and ROOT. In one single simulation the passage of particles can be tracked accurately through an accelerator including the interaction with the accelerator material and subsequent secondary radiation production and transport. BDSIM is regularly used to simulate beam loss and energy deposition as well as machine detector interface studies. In this paper we present the latest developments beyond BDSIM V1.0 added for ongoing studies. For simulation of collimation systems several new additions are described including new element geometry, enhanced sensitivity and output information. The output has been further enhanced with aperture impact information and dose information from scoring meshes. As well as supporting the full suite of Geant4 physics lists, a new user interface is described allowing custom physics lists and user components to be easily included in BDSIM. New undulator, crystal collimator and wire-scanner elements are also described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS058  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS060 Multi-objective Optimization of 3D Beam Tracking in Electrostatic Beamlines 3263
 
  • V. Rodin, J.R. Hunt, J. Resta-López, B. Veglia, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J.R. Hunt, J. Resta-López, V. Rodin, B. Veglia, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: *This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 721559.
After CERN’s Long Shutdown 2 (LS2) the Extra Low Energy Antiproton (ELENA) ring will begin providing extremely low energy (100 keV) antiproton beams to the antimatter experiments in the AD hall. To allow for simultaneous operation and guarantee maximum efficiency, all transfer lines will be based on electrostatic optics and short pulse (∼100 ns) deflectors. Currently, only a limited number of simulation codes allow a realistic representation of these elements, limiting the capabilities for beam quality optimization. In this contribution methods for modelling realistic electrostatic optical elements and perform 3D tracking studies through these are presented. A combination of finite element methods and experimental measurements are used along with a modified version of the G4Beamline and BMAD codes. Multi-objective optimization techniques are then applied to optimize beam transfer and beam quality at various points along the transfer lines.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS060  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS062 Zgoubi Status: Improved Performance, Features, and Graphical Interface 3271
 
  • D.T. Abell, P. Moeller, R. Nagler, B. Nash, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • I.B. Beekman
    ParaTools, Inc., Eugene, Oregon, USA
  • F. Méot
    BNL, Upton, Long Island, New York, USA
  • D.W.I. Rouson
    Sourcery Institute, Oakland, California, USA
 
  Funding: This work was supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0017181.
The particle tracking code Zgoubi * has been used for a broad array of accelerator design studies, including FFAGs and EICs. Zgoubi is currently being used to evaluate the spin polarization performance of proposed designs for both JLEIC ** and eRHIC ***, and to prepare for commissioning the CBETA BNL-Cornell FFAG return loop ERL ****. We describe our on-going work on several fronts, including efforts to parallelize Zgoubi using new features of Fortran 2018 *****, and a new implementation of Zgoubi’s particle update algorithm. We also describe a new, web-based graphical interface for Zgoubi.
* F. Méot, FERMILAB-TM-2010, 1997
** J. Martinez-Marin et al., IPAC18, MOPMF004
*** V.H. Ranjbar et al., IPAC18, MOPMF016
**** F. Méot et al., NIM-A 896:60, 2018
***** wg5-fortran.org/f2018.html
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS062  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS072 Application of Bayesian Inference in Accelerator Commissioning of FRIB 3289
 
  • Y. Hao, L.M. Neufcourt
    FRIB, East Lansing, USA
 
  We will report the preliminary application of the Bayesian Inference of the unknown parameters of accelerator model using the FRIB commissioning data. The inference result not only indicates the value of the unknown parameter, but also the confidence of adopting the value. The Bayesian approach provides an alternative method to understand the difference between accelerator model and the hardware and may help achieving ultimate beam parameters of FRIB.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS072  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS079 Analysis of Particle Noise in a Gridless Spectral Poisson Solver for Symplectic Multiparticle Tracking 3304
 
  • C.E. Mitchell, J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: This work was was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Gridless symplectic methods for self-consistent modeling of space charge in intense beams possess several advantages over traditional momentum-conserving particle-in-cell methods, including the absence of numerical grid heating and the presence of an underlying multi-particle Hamiltonian. Despite these advantages, there remains evidence of irreversible emittance growth due to numerical particle noise. For a class of such algorithms, a first-principles kinetic model of the numerical particle noise is obtained and applied to gain insight into noise-induced entropy growth and thermal relaxation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS079  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS083 Multipass Simulations of Space Charge Compensation using Electron Columns at IOTA 3313
 
  • C.S. Park, E.G. Stern
    Fermilab, Batavia, Illinois, USA
  • S. Chattopadhyay, B.T. Freemire
    Northern Illinois University, DeKalb, Illinois, USA
  • C.E. Mitchell, R.D. Ryne
    LBNL, Berkeley, California, USA
 
  Defocusing repulsive forces due to self space charge fields lead to degradation of high-intensity particle beams. Being of particular concern for low- and medium-energy proton beams, they result in emittance growth, beam halo formation, and beam loss. They set stringent limits on the intensity of frontier accelerators; therefore, the mitigation of space charge effects is a crucial challenge to improve proton beam intensity. The space charge effects in a positively charged proton beam can be effectively compensated using negatively charged electron columns. In this paper, we present the results of simulations using Synergia of the Electron Column lattice for IOTA. Beam loss due to space charge effects and aperture restrictions have been studied, as well as bunch formation and matching using an adiabatic ramp of the RF cavity. The results show the need for space charge compensation, and provide the basis for integration of the Synergia and Warp codes in order to form a complete simulation of space charge compensation using an Electron Column in IOTA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS083  
About • paper received ※ 16 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS088 Integration of Cavity Design and Beam Dynamics Simulation Using the Parallel IMPACT and the ACE3P Codes 3317
 
  • J. Qiang, D. A. Bizzozero
    LBNL, Berkeley, California, USA
  • L. Ge, Z. Li, C.-K. Ng, L. Xiao
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and DE-AC02-76SF00515,
The 3D parallel code suite IMPACT has been extensively used in the beam dynamics study of photoinjectors while the 3D parallel code ACE3P has been extensively used in the RF cavity design. In this paper, we propose integrating the ACE3P cavity design and the IMPACT beam dynamics simulation into a single work flow. Such a workflow enables efficient simulation of 3D effects(e.g. RF coupler) on high performance computers.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS088  
About • paper received ※ 07 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS096 Open XAL Status Report 2019 3341
 
  • A.P. Zhukov, C.K. Allen, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
  • B.E. Bolling, J.F. Esteban Müller, E. Laface, Y. Levinsen, N. Milas, C. Rosati
    ESS, Lund, Sweden
  • C.P. Chu, Y. Li
    IHEP, Beijing, People’s Republic of China
  • T. Dodson
    University of Tennessee, Knoxville, USA
  • P. Gillette, P. Laurent, G. Normand, A. Savalle
    GANIL, Caen, France
  • M.T. Li, X.H. Lu, J. Peng
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  The Open XAL accelerator physics software platform is being developed through an international collaboration among several facilities since 2010. This paper discusses progress in beam dynamics simulation, new RF models, and updated application framework along with new generic accelerator physics applications. We present the current status of the project, a roadmap for continued development and an overview of the project status at each participating facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS096  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS104 Synchrotron Radiation Reflections in the CLIC Beam Delivery System 3363
SUSPFO017   use link to see paper's listing under its alternate paper code  
 
  • D. Arominski, A. Latina, A. Sailer, D. Schulte
    CERN, Meyrin, Switzerland
 
  Synchrotron radiation (SR) reflection is an important issue for future linear colliders. High fluxes of the SR might impact the performance of the detector, through irradiation of the forward luminosity and beam quality calorimeters or of the innermost layers of the vertex detector. The photon reflections depend on the beam pipe apertures’ size, their shape, and materials used with various surface roughness. In this work, we present a study of SR including reflection for the 380 GeV and 3 TeV beam parameters and optics of the Compact Linear Collider’s Final Focus System. The simulations of the SR reflections using the Synrad+ software are presented and the impact on the detector is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS104  
About • paper received ※ 29 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS105 Simulation of Sirius Booster Commissioning 3366
 
  • M.B. Alves, L. Liu, F.H. de Sá
    LNLS, Campinas, Brazil
 
  Sirius is the new 3 GeV fourth-generation low emittance light source under construction at the Brazilian Synchrotron Light Laboratory. In order to study strategies forthe commissioning, different scenarios were studied by tracking simulations on lattice models with realistic alignment and magnet excitation errors, taking into account the finite precision of the beam diagnostic devices. We developed a commissioning algorithm that provides an efficient adjustment of the on-axis injection parameters, trajectory and closed orbit corrections and tuning of the RF parameters. With this algorithm it was possible to obtain a stable beam for thousands of turns in all the random machines simulated. The algorithms allows for partially automated commissioning procedures.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS105  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS106 Accelerator Optimization using Big Data Science Techniques 3370
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This project has received funding from STFC under grant reference ST/P006752/1.
Managing, analyzing and interpreting large, complex datasets and high rates of data flow is a growing challenge for many areas of science and industry. At particle accelerators and light sources, this data flow occurs both, in the experiments as well as the machine itself. The Liverpool Big Data Science Center for Doctoral Training (LIV. DAT) was established in 2017 to tackle the challenges in Monte Carlo modelling, high performance computing, machine learning and data analysis across particle, nuclear and astrophysics, as well as accelerator science. LIV. DAT is currently training 24 PHD students, making it one of the largest initiatives of this type in the world. This contribution presents research results obtained to date in projects that focus on the application of big data techniques within accelerator R&D.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS106  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)