Keyword: controls
Paper Title Other Keywords Page
MOPGW010 First Application of Online Particle Swarm Optimization at SOLEIL injection, storage-ring, operation, vacuum 82
 
  • A. Bence, L.S. Nadolski
    SOLEIL, Gif-sur-Yvette, France
  • J. Li
    HZB, Berlin, Germany
 
  First attempts of online optimisation of SOLEIL using Particle Swarm Optimisation (PSO) is reported with two major applications. This technique proves to be particularly suitable in a control room and could become a standard operation tool for tuning the accelerators in complement of other techniques. The first optimisation of the injection in the storage ring will be presented using the injection septa and the vertical correctors of the booster to storage ring transfer line. The second work will summarise the results obtained from the optimisation of the transverse on- and off-momentum dynamics in presence of insertion devices. Main results, the implementation and improvements will be presented and discussed thoroughly.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW010  
About • paper received ※ 19 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW017 Feedback Design for Control of the Micro-Bunching Instability based on Reinforcement Learning bunching, storage-ring, feedback, electron 104
 
  • T. Boltz, T. Asfour, M. Brosi, E. Bründermann, B. Härer, P. Kaiser, A.-S. Müller, C. Pohl, P. Schreiber, M. Yan
    KIT, Karlsruhe, Germany
 
  The operation of ring-based synchrotron light sources with short electron bunches increases the emission of coherent synchrotron radiation (CSR) in the THz frequency range. However, the micro-bunching instability resulting from self-interaction of the bunch with its own radiation field limits stable operation with constant intensity of CSR emission to a particular threshold current. Above this threshold, the longitudinal charge distribution and thus the emitted radiation vary rapidly and continuously. Therefore, a fast and adaptive feedback system is the appropriate approach to stabilize the dynamics and to overcome the limitations given by the instability. In this contribution, we discuss first efforts towards a longitudinal feedback design that acts on the RF system of the KIT storage ring KARA (Karlsruhe Research Accelerator) and aims for stabilization of the emitted THz radiation. Our approach is based on methods of adaptive control that were developed in the field of reinforcement learning and have seen great success in other fields of research over the past decade. We motivate this particular approach and comment on different aspects of its implementation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW017  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW040 Beam Optics Design of the Superconducting Region of the JAEA ADS emittance, linac, cavity, lattice 181
 
  • B. Yee-Rendón, Y. Kondo, F.M. Maekawa, S.I. Meigo, J. Tamura
    JAEA/J-PARC, Tokai-mura, Japan
 
  The Japan Atomic Energy Agency (JAEA) is proposing an Accelerator Driven Subcritical System (ADS) for the transmutation of the nuclear waste. ADS will consist of a superconducting CW proton linear accelerator of 30MW and a subcritical nuclear reactor core. The main part of the acceleration will take part in the superconducting region using five types of radio frequency cavities. The ADS operation demands a high intensity and reliability of the beam. Therefore, the beam optics design plays a fundamental role to reduce the beam loss, control emittance growth and beam halo.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW040  
About • paper received ※ 17 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW090 Alignment of a Magnetic Lattice Based on Particle Tracking alignment, lattice, optics, sextupole 324
 
  • K.P. Nesteruk, C. Calzolaio, J.M. Schippers
    PSI, Villigen PSI, Switzerland
 
  In calculations based on particle tracking in 3D magnetic field maps alignment of the components of a magnetic lattice is essential to obtain desired properties of beam optics. In this contribution we propose a method to control and correct misalignments during the process of the beam optics design. These misalignments would result from overlapping fringe fields of different field maps. The 3D field maps are obtained from the software for electromagnetic calculations OPERA. The full 3D map is saved in the tracking coordinate system and a ROOT (An Object Oriented Data Analysis Framework) ntuple is then created for analysis. The trajectory of the reference particle is calculated by means of OPAL - open source code developed at the Paul Scherrer Institut (PSI). The transverse magnetic field profiles allow possible misalignments to be precisely determined and the corresponding corrections to be calculated. Moreover, the multipole content in discrete locations along the lattice can be controlled by performing a polynomial fit, which calculates the magnetic field harmonics with respect to the reference track. This method was used at PSI for a design of a model of the magnetic lattice for a superconducting gantry for proton therapy with a large momentum acceptance.
*An Object Oriented Data Analysis Framework - http://root.cern.ch
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW090  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP006 Magnetic Measurement With Single Stretched Wire Method on SuperKEKB Final Focus Quadrupoles solenoid, quadrupole, detector, interaction-region 432
 
  • Y. Arimoto, K. Egawa, T. Kawamoto, M. Masuzawa, Y. Ohsawa, N. Ohuchi, R. Ueki, X. Wang, H. Yamaoka, Z.G. Zong
    KEK, Ibaraki, Japan
  • J. DiMarco, J.M. Nogiec, G. Velev
    Fermilab, Batavia, Illinois, USA
 
  Superconducting-final-focus-quadrupole magnet system (QCS) were installed on an interaction region (IR) of SuperKEKB on Feb. 2017. The QCS consists of eight quadrupole magnets and four compensation solenoids; these magnets are contained in the two cryostats and are installed into Belle II detector which generates a solenoid field of 1.5 T. We determined the quadrupole centers with respect to accelerator beam lines with a single stretched wire (SSW) method. Here the results of the magnetic measurement with SSW are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP006  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP045 RHIC Heavy Ion Operation With Near-Integer Working Point acceleration, feedback, operation, power-supply 544
 
  • C. Liu, G.J. Marr, A. Marusic, M.G. Minty, V. Schoefer
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The interplay of space charge and beam-beam effects limits the beam lifetime at low energies at the Relativistic Heavy Ion Collider (RHIC). To improve the beam lifetime, a near-integer working point (0.096/0.094) was tested at fixed energy and during acceleration. In the demonstration experiments, we observed the benefit of the near-integer working point on beam lifetime, however, did not achieve the desired level of orbit correction. This article will present the experimental results of operation with a near-integer working point, and analyze the causes of the orbit control problem.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP045  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS007 SARAF Equipped Cavity Test Stand (ECTS) at CEA cavity, cryomodule, cryogenics, EPICS 852
 
  • O. Piquet, C. Boulch, D. Chirpaz-Cerbat, G. Ferrand, F. Gohier, T.J. Joannem, G. Monnereau, Th. Plaisant
    CEA-IRFU, Gif-sur-Yvette, France
  • D. Braud, P. Carbonnier, P. Guiho, L. Maurice, J. Plouin, P. Sahuquet, N. Solenne
    CEA-DRF-IRFU, France
  • F. Gouit, A. Pérolat
    CEA, Gif-sur-Yvette, France
 
  CEA is committed to delivering a Medium Energy Beam Transfer line and a Super Conducting Linac (SCL) for SARAF accelerator in order to accelerate 5mA beam of either protons from 1.3MeV to 35MeV or deuterons from 2.6 MeV to 40.1MeV. The SCL consists in 4 cryomodules separated by warm section housing beam diagnostics. The two first identical cryomodules hosts respectively 6 and 7 half-wave resonator (HWR) low beta (0.091) cavities 176MHz. In order to test the cavity with its tuner and coupler and validate some design consideration, the Equipped Cavity Test Stand (ECTS) has been designed and will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS007  
About • paper received ※ 07 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS035 Recommissioning of SIS18 After FAIR Upgrades MMI, operation, extraction, cavity 932
 
  • D. Ondreka, C. Dimopoulou, H.C. Hüther, H. Liebermann, J. Stadlmann, R.J. Steinhagen
    GSI, Darmstadt, Germany
 
  The synchrotron SIS18 of the GSI facility has recently resumed beam operation after a long shutdown, during which major upgrades for the operation of SIS18 in the FAIR facility were realized. This signifies a major milestone for the mission of GSI and FAIR. On one hand, the scientific program of GSI depends strongly on beam from SIS18, including the very important developments of detectors for FAIR experiments. On the other hand, large parts of the existing GSI accelerator facility, including SIS18, are now operated with the FAIR control system, demonstrating its suitability for control of a large scale accelerator facility. Commissioning of the new control system started during the shutdown with a series of dry runs, which proved very useful to establish the basic functionalities. Recommissioning of SIS18 was further facilitated by the fact that the machine model of SIS18, implemented in the modeling framework LSA, had already been tested with beam several years before the shutdown. Thus, all operation modes of SIS18, including multi-turn injection, electron cooling, as well as fast and slow extraction could be successfully commissioned during the first weeks of operation. Other commissioning activities concerned the operation of new devices installed during the shutdown. These devices, mostly installed to prepare SIS18 for the operation with FAIR design parameters, open new possibilities in the standard operation of SIS18. A challenge for the operation of SIS18 is posed by ground motion due to ground water lowering for the nearby FAIR construction site. Surveys revealed that SIS18 subsided by several centimeters during one year. Even though the machine was realigned prior to recommissioning, the dynamics of the ground motion will continue to affect operation of SIS18.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS035  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS057 SSPA upgrade plan design for CiADS cavity, coupling, klystron, simulation 990
 
  • Q. Chen, Z. Gao, Y. He, G. Huang, R. Huang, T.C. Jiang, S.H. Liu, L.P. Sun, X.W. Wang, Z.J. Wang, W.M. Yue
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Funding: Supported by the National natural science foundation of China (Grand No. 11525523 and 91426303)
For ADS application, both research and commercial facilities requires extremely large amount of RF power to drive several mega watts beam power, so proper RF power upgrade plan can reduce the budget per phase and increase the valuable experience in engineering. CiADS (China initiative Accelerator Drive System) proposes to employ SSPA (Solid State Power Amplifier) as RF power source for flexible configuring and upgrading in the future. In this paper, from an engineering point of view, it is acceptable if proper matching beam current was selected for adopting fixed-coupling input coupler while only sacrificed some RF power during the upgrade plan. SSPA upgrade plan start with the stablility requirement to determine bandwidth, then combined with other RF power requirements to select output level, finally, checking how much the surplus of selected level SSPA for detuning control. The calculation and evaluation results for a §I{545}{MeV} physical design lattice illustrate that some resonance cavities had very limited surplus RF power left for detuning control that provided necessary optimization direction and guidelines for both physical design and SSPA arrangement.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS057  
About • paper received ※ 30 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS077 RCCS Operation and Characteristics in Resonance Frequency Control Mode at KOMAC resonance, DTL, operation, radio-frequency 1025
 
  • K.H. Kim, H.S. Jeong, H.S. Kim, S.G. Kim, H.-J. Kwon, Y.G. Song
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work has been supported through KOMAC (Korea Multi-purpose Accelerator Complex) operation fund of KAERI by MSIT (Ministry of Science and ICT)
A 100-MeV proton accelerator is under operation at Korea Multi-purpose Accelerator Complex (KOMAC). The resonance control cooling system (RCCS) has supplied the cooling water to drift tube linac (DTL). The DTL need to keep the resonant frequency of 350MHz during the operation. RCCS has a critical role in sustaining the acceptable resonant frequency error in DTL by adopting the resonance frequency control mode. Details on the RCCS operation in resonance frequency control mode will be given in this study.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS077  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS114 Upgrades for Subsystems of the 200 MeV H Linac at BNL linac, power-supply, DTL, cavity 1152
 
  • D. Raparia, G. Atoian, D.M. Gassner, D. Goldberg, O. Gould, T. Lehn, V. LoDestro, M. Mapes, M. Mapes, I. Marneris, S. Polizzo, J. Ritter, A. Zaltsman, A. Zelenski
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
To increase the average current for isotope production by factor of two, we have undertaken several upgrades for our 50-year-old 200 MeV H linac. Average current will be double by increasing the beam pulse length. We are testing the DTL tanks reliability by increasing RF pulse length and replacing weak RF joints. We are in the process of replace 50-year old ion pumps and a new PLC based vacuum I&C system for the DTL tanks. We are also upgrading/replacing/adding LLRF, diagnostics, machine protection system, and quadrupole power supply. Paper will present status of these activity and future plan.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS114  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZPLM1 Adding Data Science and More Intelligence to Our Accelerator Toolbox network, electron, laser, simulation 1191
 
  • S. Biedron
    University of New Mexico, Albuquerque, USA
  • S. Biedron
    Element Aero, Chicago, USA
 
  Requirements for recent accelerators are becoming more and more stringent and sophisticated machine tuning is necessary. A large amount of data is acquired from accelerator components as an assistant of machine tuning. It is hard for operators to utilize all the accelerator data for machine tuning. Therefore, machine learning, data mining and big data handling are recently applied to accelerators. For instance, Bayesian optimization is used for maximizing a target performance, a clustering algorithm is used for anomaly detection, and hidden correlation finding is utilized for discovering new aspects of a machine. This talk reviews recent progress of machine learning applications and big data handling in accelerators.  
slides icon Slides TUZPLM1 [11.978 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUZPLM1  
About • paper received ※ 20 May 2019       paper accepted ※ 16 June 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZZPLM3 The EPICS Software Framework Moves from Controls to Physics EPICS, detector, database, experiment 1216
 
  • G.R. White, M.V. Shankar
    SLAC, Menlo Park, California, USA
  • T.M. Cobb
    DLS, Oxfordshire, United Kingdom
  • L.R. Dalesio, M.A. Davidsaver
    Osprey DCS LLC, Ocean City, USA
  • S.M. Hartman, K.-U. Kasemir, M.R. Pearson, K. Vodopivec
    ORNL, Oak Ridge, Tennessee, USA
  • D.G. Hickin
    EuXFEL, Schenefeld, Germany
  • A.N. Johnson, M.L. Rivers, G. Shen, S. Veseli
    ANL, Argonne, Illinois, USA
  • H. Junkes
    FHI, Berlin, Germany
  • M.G. Konrad, G. Shen
    FRIB, East Lansing, USA
  • T. Korhonen
    ESS, Lund, Sweden
  • M.R. Kraimer
    Self Employment, Private address, USA
  • R. Lange
    ITER Organization, St. Paul lez Durance, France
  • M. Sekoranja
    Cosylab, Ljubljana, Slovenia
  • K. Shroff
    BNL, Upton, Long Island, New York, USA
  • D. Zimoch
    PSI, Villigen PSI, Switzerland
 
  The Experimental Physics and Industrial Control System (EPICS), is an open-source software framework for high-performance distributed control, and is at the heart of many of the world’s large accelerators and telescopes. Recently, EPICS has undergone a major revision, with the aim of better computing supporting for the next generation of machines and analytical tools. Many new data types, such as matrices, tables, images, and statistical descriptions, plus users’ own data types, now supplement the simple scalar and waveform types of the former EPICS. New computational architectures for scientific computing have been added for high-performance data processing services and pipelining. Python and Java bindings have enabled powerful new user interfaces. The result has been that controls are now being integrated with modelling and simulation, machine learning, enterprise databases, and experiment DAQs. We introduce this new EPICS (version 7) from the perspective of accelerator physics and review early adoption cases in accelerators around the world.  
slides icon Slides TUZZPLM3 [4.271 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUZZPLM3  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP001 Design and Experimental Results of a 1.1kA/800V AC Power Supply for Sirius Booster Dipoles dipole, booster, power-supply, synchrotron 1227
 
  • C. Rodrigues, G.O. Brunheira, B.E. Limeira, G.M. Rogatto
    LNLS, Campinas, Brazil
 
  Sirius is a 4th generation synchrotron light source de-signed and being built by Brazilian Synchrotron Light Laboratory (LNLS), with first beam scheduled for 2019. Approximately thousand power supplies (PS) will be needed to feed all the magnets, being 57 to operate the booster injector. The two booster dipole PS are the most complex, not only due to their higher current (1.1 kA), voltage (800 V) and power (333 kW) output, but also because the current must follow a quasi-triangular waveform, from a value close to zero to almost the maximum in 320 ms and at a repetition rate of 2 Hz. Due to the high output values, each PS is formed by two sets in parallel of 4 modules in series, what means 8 modules with 550 A / 200 V output. In order to reduce the 2-Hz effect in the grid, each module has two main stages. The input stage has the function to regulate the average voltage in a capacitor bank consuming a constant RMS current from the grid, which value depends on of the PS average output power. The output stage has the function to transfer the energy from the capacitor bank to the load, with the output cur-rent following the reference waveform. This work describes this PS, showing its topology, some aspects of its design and obtained results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP001  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP002 Overview of Sirius Power Supply System power-supply, dipole, synchrotron, quadrupole 1230
 
  • C. Rodrigues, G.O. Brunheira, B.E. Limeira, R.J. Marcondeli, M.G. Martins, G.R. Oliveira, A.R.D. Rodrigues, G.M. Rogatto, A.P.A. Silva, A.R. Silva, H. Sousa
    LNLS, Campinas, Brazil
 
  Sirius is a 4th generation synchrotron light source designed and under construction by Brazilian Syn-chrotron Light Laboratory (LNLS), which first beam is scheduled to operate in 2019. Almost a thousand Pow-er supplies (PS) will be needed to feed all magnets of the magnetic lattice, with outputs ranging from 10A to 1.1kA and 50W to 333kW. Almost all power supplies were designed at LNLS. Only three families of power modules were de-signed: low power (FBP), high power (FAP) and AC (FAC). Each PS can have up to 8 modules in a parallel or/and series association, in order to reach the rated output values. All PS are digitally controlled by the same hardware and firmware, also developed by LNLS, called Digital Regulation System (DRS), but with different parameter settings. The DRS is also responsible by the communi-cation with other systems, PS monitoring, data man-agement, etc. This work presents an overview of this system, showing the PS specifications, family topologies and results of tests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP002  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP011 Storageless Resonant Converter for Accelerator Magnets operation, resonance, simulation, storage-ring 1248
 
  • M. Cautero, T. N. Gucin
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Elettra Sincrotrone Trieste, a specialized research centre generating high quality synchrotron radiation, has been in operation since 1993 and was revised in 2009. Recently, Elettra has been funded for a complete renewal of the storage ring. For the new machine, it is planned to employ state of the art converters, mostly of which will be designed in-house. For this purpose, it has been decided to evaluate the performance of a storage-less resonant converter, pro-posed by Dr. Slobodan Ćuk, which is a step down DC/DC converter consisting of four switches, one resonant capac-itor and two resonant inductors. For this purpose, the voltage conversion ratio of the converter has been de-rived. The topology was confirmed with simulation and a PCB layout has been designed, which is still to be tested.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP011  
About • paper received ※ 08 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP014 Digital Control System of High Precision Magnet Power Supply for SPring-8-II feedback, power-supply, FPGA, synchrotron-radiation 1259
 
  • C. Kondo, K. Fukami, S. Takano, T. Watanabe
    Japan Synchrotron Radiation Research Institute (JASRI), RIKEN SPring-8 Center, Hyogo, Japan
  • T. Fukui, H. Tanaka
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • S. Nakazawa
    SES, Hyogo-pref., Japan
  • N. Nishimori
    QST, Tokai, Japan
  • C. Saji
    JASRI/SPring-8, Hyogo-ken, Japan
 
  For the SPring-8 upgrade plan, SPring-8-II, a variety of magnet power supplies (PS) from 10 W to larger than 100 kW with a high current stability of about 10 ppm (pk-pk, typ.) are required. In order to develop the PSs within a given time and budget, we plan to use a common control system based on a digital control technology that can be adopted for the variety and the high precision PSs. The system consists of a high-precision analog-digital converter (ADC) circuit and a field programmable gate array (FPGA). Since the precision of the ADC circuit determines the current stability of the PS, we first developed the ADC circuit of high accuracy of less than 10 ppm (pk-pk). A proportional-integral (PI) control logic and a digital pulse width modulation (PWM) function was implemented in the FPGA firmware. These functions can be easily modified for each power supply by a desktop computer. We prototyped a DC power supply equipped with the newly developed digital feedback control system and confirmed that the current fluctuation was suppressed to less than 10 ppm (pk-pk). In the presentation, we will report the current status and future perspective of our power supply development including the evaluation results of the new circuits and the power supply we have developed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP014  
About • paper received ※ 16 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP015 Magnet Power Supply Calibration with a Portable Current Measuring Unit at the J-PARC Main Ring power-supply, feedback, operation, timing 1263
 
  • K. Miura, Y. Kurimoto, Y. Morita, D. Naito, T. Oogoe, T. Shimogawa
    KEK, Ibaraki, Japan
  • Y. Kuniyasu
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • K. Ooya
    SANKYU PLANT TECHNO CO., LTD., 6-5-3, Kachidoki, Japan
  • R. Sagawa
    Universal Engineering, Ibaraki-ken, Japan
 
  In the J-PARC MR, 96 bending magnets (BMs) are used in total. They are divided into 6 groups of 16 BMs. The 16 BMs in each group are connected in series and driven by a single power supply. Since all 96 BMs are symmetrically located in the ring, the magnet currents regulated by the 6 power supplies need to be same. Each power supply performs output current feedback control using electronic circuits including analog amplifications and AD / DA conversions. Due to individual differences of the electronic circuits, output current is generally expected to be different for each power supply. Therefore, we developed a current measurement unit with the portable DCCT as an independent reference. Further, we measured the magnet currents regulated by the 6 BM power supplies using the unit. We report the details of the unit as well as the results of the current measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP015  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP016 New Power Supply of Main Magnets for J-Parc Main Ring Upgrade extraction, operation, quadrupole, proton 1266
 
  • T. Shimogawa, Y. Kurimoto, K. Miura, Y. Morita, D. Naito
    KEK, Ibaraki, Japan
  • R. Sagawa
    Universal Engineering, Ibaraki-ken, Japan
 
  It is plans that the proton beam power provided to experimental facilities increase with shortening repetition period in J-PARC Main Ring (MR). As the shorten repetition period, the replacement of the power converters for main magnets in J-PARC MR is necessary to cope with issues such as power fluctuation of the main grid and increase of the output voltage. We have considered and developed the power converters with a 10 MW class which have the capacitor banks with the large capacitance. In the end of 2017, the first new power converter for a bending magnets family, which is the largest power converter in this upgrade plan, was installed in J-PARC site and the power test is ongoing using a dummy and a real load. In this report, the first new power converter for a bending magnets family in J-PARC MR is reported including the test results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP016  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP017 Design of Scanning Magnet Power Supply for HUST-PTF power-supply, target, proton, simulation 1269
 
  • X.Y. Li, Y.Y. Hu, Y.J. Lin, P. Tan, X.D. Tu, Y.C. Yu, L.G. Zhang, Z.Q. Zhang
    HUST, Wuhan, People’s Republic of China
 
  An active scanning proton therapy facility is being de-veloped at Huazhong University of Science and Technol-ogy(HUST). By controlling the deflection position of the beam with scanning magnets at different times, the superposition of discrete spot beams will form a specified shape and dose distribution conformal to the target tu-mour. A high precision and fast response power supply is required to deflect the beam quickly and accurately. In this paper, the TOSCA module in Opera3D is used to model and simulate the scanning magnets and to obtain the equivalent inductance of the magnet. Then the calcu-lated equivalent resistance inductance instead of the magnet is used to design the scanning magnet power supply. A high-voltage bridge is utilized to achieve fast response speed, and a low voltage bridge and PI control algorithm is adopted to ensure power supply accuracy. The Simulation result shows that the designed power supply meets the requirements of response speed and accuracy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP017  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP022 Research on Digital Scanning Power Supply Technology for Proton Therapy System power-supply, proton, scattering, radiation 1286
 
  • J. Huang, M. Fan, J. Yang, L.G. Zhang
    HUST, Wuhan, People’s Republic of China
  • T. Yu, C. Zuo
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People’s Republic of China
 
  Funding: Work supported by The National Key Research and Development Program of China, with grant No. 11505068
Proton has great advantages in the field of cancer radiotherapy because of its good characteristic of Bragg peak. HUST-PTF is a proton therapy facility under development in Huazhong University of science and technology. It delivers the beam to the patients with a pencil beam scanning nozzle. Scanning power supplies are placed in the nozzle of the proton therapy device and they are required high accuracy, high speed and high stability. In this paper,the structure diagram of HUST-PTF is shown. The parameters of scanning magnets and its power supply are introduced. Finally, some test results of power supply are shown. The next work will debug the control system of the scanning power supply and adjust it with the scanning magnet to see if it meets the design requirements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP022  
About • paper received ※ 19 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP023 Design of Digital Controller for Multi Module Series-parallel Accelerator Power Supply power-supply, simulation, hardware, software 1288
 
  • J. Li, Y. Liu, X. Qi, W.Q. Zhang
    IHEP, Beijing, People’s Republic of China
 
  Funding: Supported by funds, Key laboratory of particle Acceleration Physics & Technology, Institute of High Energy Physics, Chinese Academy of Sciences,Project number:Y5294107TD
With the development of accelerators, Accelerator physics require power supply output high voltage and current (Peak power reached MWs). And the current stability requirements better than 10ppm. Therefore, the power supply is mostly used in the mode of module series-parallel. However, during actual commissioning, the power supply often does not run at rated current. If the power supply is running at less than 30% of the rated current, the power output current stability will drop sharply. This topic designed a set of digital controller for multi-module serial-parallel control. The digital controller can automatically adjust the number of input modules according to the current setting, and can automatically allocate the required PWM number of the module. While taking into account the synchronization between the various modules, Ensure the power supply is always running at an optimal working condition. Through a special AD conversion hardware design and advanced closed-loop controller algorithm, the digital controller can provide up to 20 high-resolution PWM signals to drive power conversion devices.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP023  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP024 Research on Module Design and Network Management of Accelerator Power Supply System power-supply, interface, operation, network 1291
 
  • Y. Li, S.Y. Chen, C. Han, P. Liu
    IHEP, Beijing, People’s Republic of China
 
  Accelerator power supply system is a very special system. Many factors such as high number of power supplies, uninterrupted operation and unreasonable design lead to high failure rate, long maintenance time and the discovery of the fault is not timely, which bring a lot of unnecessary troubles to the operator. In this paper, a networked control method for accelerator power supply is studied, and the power supply parallel connection technology is used to maximize the trouble-free time of the power supply and increase the redundancy performance of the power supply. With independent networked control, the accelerator power supply system becomes a whole, no longer relying solely on the control of the accelerator control system, but in a network system with self-diagnosis and self-healing. Through the monitoring and management of the upper computer, the power supply system will be work stable, and the function of remote operation and remote repair of the power supply is realized finally. This is a research direction for the operation of large accelerator power supply systems in the future.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP024  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP025 Design of Fast Corrector Magnet Power Supply for HEPS power-supply, simulation, experiment, radiation 1294
 
  • P. Liu, C. Han, F. Long
    IHEP, Beijing, People’s Republic of China
 
  High energy photon source is a fourth-generation synchrotron radiation light source with energy of 6Gev and ultra-low emittance (<0.1nm’rad). The ultra-low beam emittance requires high beam stability. Therefore, we develop a fast correction power supply with high bandwidth and low current ripple to improve the performance of the fast close orbit correction sys-tem to prove the high beam stability. The power supply adopts FPGA for full-digital control and use high speed ADC with temperature control. The power sup-ply has a small signal-bandwidth of 10 kHz and output current ripple lower than 20ppm. In this paper, we will describe the hardware design and software control methods and the test results will be demonstrated  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP025  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP027 Research and Design of Digital Magnet Power Supply Controller power-supply, Ethernet, real-time, FPGA 1297
 
  • Z.X. Shao, H. Gao, G. Liu, P. Liu, X.K. Sun, H.Y. Zhang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Funding: Supported by’the Fundamental Research Funds for the Central Universities’(WK2310000064)
Hefei Advanced Light Source (HALS) is the fourth-generation radiation light source in China which is under design. Ultra-low beam emittance requires higher performance of power supply system. The power supply controller is a key part of the power system. This article describes the design and testing of high-stability power controllers and fast corrector power supply controllers. A new controller architecture is proposed for the problems of the two controllers.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP027  
About • paper received ※ 29 April 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP028 Research Progress of Power Supply System in HALS power-supply, dipole, ISOL, interface 1300
 
  • Z.X. Shao, H. Gao, G. Liu, P. Liu, L. Wang, H.Y. Zhang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Funding: Supported by ’the Fundamental Research Funds for the Central Universities’(WK2310000064) Supported by the Hefei Advanced Light Source Pre-research Project.
Hefei Advanced Light Source (HALS) is the fourth generation light source in China’s planning and construction. In order to achieve the diffraction limit of the emission and improve the beam quality, the research on magnet power supply (MPS) technology is essential. We have designed a variety of solutions for different power supplies. We designed the first version of the high stability power supply control card. The first version of the high-stability power supply control card was designed and tested with a small power module. Our pre-research system has developed a corrector magnet power supply with a small signal response bandwidth higher than 10 kHz. The developed power prototypes all use self-developed controllers, and most of the test results can meet the requirements. This article describes the progress of the HALS power supply system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP028  
About • paper received ※ 08 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP032 Design of Analog to Digital Converter Scheme for High - Precision Electromagnet Power supply FEL, hardware, experiment, dipole 1309
 
  • M.J. Kim, Choi. Choi
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • J.H. Han, S.-H. Jeong, Y.G. Jung, H.-S. Kang, D.E. Kim, H.-G. Lee, S.B. Lee, S.J. Lee, B.G. Oh, K.-H. Park, H.S. Suh
    PAL, Pohang, Kyungbuk, Republic of Korea
  • M.S. Kim
    Dongguk University, Seoul, Republic of Korea
 
  This paper deals with the design of an analogue-to-digital converter (ADC) scheme for a highly precise magnet current supply (MPS). The MPSs are requires with stable and precise current specification in range of the ppm. To meet the requirements, the AD circuit is composed of parallel ADCs of low-medium resolution. Digitally, the oversampling and averaging are performed to increase both the effective resolution and the signal to noise ratio (SNR). The implemented AD circuit was improved about 18 dB (32 times oversampling). The MPS applied by the proposed ADC scheme provides more precise control and the stable current within 10 ppm at 200 A. The experiment used a dipole magnet of the PAL-XFEL and its results proved feasibility through precisely measurable DVM3458A (Keysight Co.).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP032  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP034 A Modular Optical Firing Interface for CERN’s Generic Power Converter Control Platform interface, ISOL, status, electron 1315
 
  • M. Di Cosmo, T.G. Gaime, B. Todd
    CERN, Geneva, Switzerland
 
  The power converters group at CERN has developed a third generic converter controller (FGC3) and regulation platform (RegFGC3), capable of controlling any of CERN’s power converters. This platform provides electrical connections to the low-level control elements of power converters, and in some cases a galvanic isolation is required between the converter controller output, and the power converter under control. To meet these requirements, a generic modular optical firing platform has been developed, which converts the electrical firing pulses from the RegFGC3 and FGC3 platforms into optical drive signals. Designed to be fully scalable, this platform provides various protection mechanisms to verify the integrity of the firing information. For example, checking for illegal firing states, dead-time, and drive errors. This paper describes the modular optical firing interface, the basic principles, and the configurations which are in use, or are planned to be used at CERN.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP034  
About • paper received ※ 15 May 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP039 Data-driven Controller Design Using the CERN Power Converter Control Libraries (CCLIBS) experiment, interface, factory, survey 1335
 
  • A. Nicoletti, M. Martino
    CERN, Geneva, Switzerland
 
  The data-driven control approach is a control methodology in which a controller is designed without the need of a model. Parametric uncertainties and the associated unmodeled dynamics are therefore irrelevant; the only source of uncertainty comes from the measurement process. The CERN Power Converter Control Libraries (CCLIBS) have been updated to include data-driven H-infinity control methods recently proposed in literature. In particular, a two-step convex optimization algorithm is performed for obtaining the 2-degree-of-freedom controller parameters. The newly implemented tools in CCLIBS can be used both for frequency response measurement of the load and for controller synthesis. A case study is presented where these tools are used for an application in the CERN East Area Renovation Project for which a high-precision 900 A trapezoidal current pulse is required with 450 ms flat-top and 350 ms ramp-up and ramp-down times. The tracking error must remain within ± 100 parts-per-million (ppm) during the flat-top (before the ramp-down phase starts). The magnet considered in the case study is of non-laminated iron type, hence the necessity of data-driven techniques since the dynamics of such a magnet is difficult to be modeled accurately (due to eddy currents losses). The Power Converter used is a SIRIUS 2P (with a current and voltage rating of 400 Arms and 450 V, respectively) whose digital control loop is regulated at a sampling rate of 5 kS/s.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP039  
About • paper received ※ 08 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP040 Impact of Flux Jumps on High-Precision Powering of Nb3Sn Superconducting Magnets experiment, simulation, superconducting-magnet, superconductivity 1338
 
  • M. Martino, P. Arpaia, S. Ierardi
    CERN, Geneva, Switzerland
 
  Nb3Sn superconducting magnets represent a technology enabler for future high-energy particle accelerators. A possible impediment, though, comes from flux jumps that, so far, could not be avoided by design unlike for NbTi technology. However, the impact of flux jumps on the powering has not been properly investigated to date. Flux jumps appear during current ramps at relatively low value of current and tend to disappear towards nominal current. They are usually detected as voltage jumps between different magnet coils but they might also produce overall voltage jumps across the magnet electrical terminals. Such jumps might perturb the power converter feedback control loop and therefore potentially jeopardize its precision performance during energy ramps. This work aims at : (i) presenting preliminary experimental test results on some HL-LHC Nb3Sn model and prototype magnets, and (ii) attempting to build a simplified electrical model of the flux jumps (with focus only at its interaction with the power converter feedback control loop). Such work is a starting point for outlining possible power converters control strategies able to minimize flux jumps impact on high-precision powering of Nb3Sn superconducting magnets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP040  
About • paper received ※ 23 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP045 The Protection Instrument for Cryogenic Phase Separator Pressure Relief Valve of TPS Beamline monitoring, software, operation, cryogenics 1350
 
  • C.C. Liang, C.Y. Chang, C.F. Chang, Y.H. Guo, M.H. Lee, C.Y.L. Liu, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  TPS (Taiwan Photon Source) beamlines have operated for three years after the successful commission in 2015. Recently, the electromagnetic activated pressure relief valve of cryogenic phase separator of beamline had malfunction due to the rust of its control circuits. After on site observation and temperature records, the water was found to be condensed around the outlet area due to fast temperature dropping near the valve as it was activated. Such situation would cause the rust of metal components due to humidity after a certain period of time. To avoid such event, fan is used to blow the condensed water and silicone heat belts are added to increase the local temperature with unique designed clamp for fixing the fan, sensors and safety circuit breaker. Via the temperature control system, the temperature monitoring, setting and the abnormal situation can be access on web page through Ethernet to make sure the proper operation of the protected devices. The instrument has been operated since Dec. 2018. After four months of operation, the moist situation has been improved and the relief valve is no longer frosted.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP045  
About • paper received ※ 30 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP046 Improvement the Bending Magnet Power Supply Performance for TPS Storage Ring power-supply, storage-ring, feedback, photon 1353
 
  • B.S. Wang, C.H. Huang, J.C. Huang, C.Y. Liu, K.-B. Liu, Y.S. Wong
    NSRRC, Hsinchu, Taiwan
 
  In the TPS (Taiwan Photon Source) facility, current stability of the electron beam depends on the bending magnet power supply and an orbit FOFB system to compensate the magnetic field. Due to the output current stability of the bending magnet power supply drifts with temperature so the orbit FOFB system should be applied to fine tune magnetic field and the photon beam should circulate in storage ring. In this paper, to stabilize the temperature of regulation circuit’s temperature box of the bending magnet power supply, the long-term output current stability is improve from ± 50ppm to ± 10ppm, and orbit FOFB system substantially reduce the tune X of beam position, effectively increasing the beam current stability and quality.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP046  
About • paper received ※ 12 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP047 Upgrade of the Cryogenic Control System for SRF Modules at the Taiwan Light Source cryogenics, SRF, operation, interface 1356
 
  • F.-T. Chung, F.Y. Chang, L.-H. Chang, M.H. Chang, S.W. Chang, L.J. Chen, Y.T. Li, M.-C. Lin, Z.K. Liu, C.H. Lo, Ch. Wang, M.-S. Yeh, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  An upgrade of the cryogenic control system for superconducting radio-frequency (SRF) modules of the Taiwan Light Source (TLS) has been completed. The biggest challenge was to recover all protection and operational functions, while minimizing the quantity of vented helium from SRF modules while replacing valve controllers. Gradually, this work was finished within several one- and ten-day scheduled machine shutdown periods for accelerator maintenance. No large helium vent nor pollution of the cryogenic system occurred during all component replacements and function verifications. Functions of the cryogenic electronics were improved, whereas the valve controllers are upgraded to new versions to increase reliability and availability. Communications with the data acquisition system was also secured by buffered signal processing module so that device shutdown of the data acquisition system will not interrupt the cryogenic valve operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP047  
About • paper received ※ 29 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP050 Conceptual Design of the Diamond-II Vacuum System vacuum, photon, storage-ring, target 1362
 
  • M.P. Cox, C. Burrows, A.G. Day, J. A. Dymoke-Bradshaw, R.K. Grant, N.P. Hammond, X. Liu, A.G. Miller, H.S. Shiers, N. Warner
    DLS, Oxfordshire, United Kingdom
 
  The conceptual design of the vacuum system for the Diamond-II storage ring upgrade is described. Due to the small vessel cross section, typically 20 mm inside diameter (ID), and the consequent conductance limitation, distributed pumping is provided by non-evaporable getter (NEG) coating supplemented by ion pumps at high gas load locations. In-situ bakeout is incorporated to allow rapid recovery from both planned vacuum interventions and unplanned vacuum events. The vacuum vessels are constructed mainly from copper alloy while stainless steel is used in regions of AC magnets requiring low electrical conductivity. The proposed layout, engineering and build sequence of the vacuum system are described along with gas flow simulations confirming the vacuum performance advantages of NEG-coated vessels compared with uncoated vessels.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP050  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP051 MULTIPACTOR SUPPRESSION BY LASER ABLATION SURFACE ENGINEERING FOR SPACE APPLICATIONS electron, laser, multipactoring, GUI 1365
 
  • R. Valizadeh, A.N. Hannah, O.B. Malyshev, B.S. Sian
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • J.S. Colligon
    University of Huddersfield, Huddersfield, United Kingdom
  • Y. Dan
    Hitachi High-Technologies Corp., Ibaraki-ken, Japan
  • V. R. Dhanak
    The University of Liverpool, Liverpool, United Kingdom
  • J. Mutch
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • B.S. Sian
    UMAN, Manchester, United Kingdom
  • N. Sykes
    Micronanics Laser Solution Center, Didcot, United Kingdom
 
  Developing a surface with low Secondary Electron Yield (SEY) is one of the main ways of mitigating electron cloud and beam-induced electron multipacting in high-energy charged particle accelerators and space-borne RF equipment for communication purposes. In this study we report on the secondary electron yield (SEY) measured from silver coated aluminium alloy as-received and after laser ablation surface engineering (LASE). Analysis shows the SEY can be reduced by 43% using LASE. EDX and SEM analysis shows it is possible to reduce the SEY whilst maintaining the original surface composition.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP051  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP053 Test Results of the Low-Stored-Energy -80 kV Regulator for Ion Sources at LANSCE linac, power-supply, ion-source, flattop 1369
 
  • J.T. Bradley III, L.N. Merrill, G. Rouleau, W. Roybal, G. Sanchez
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the U. S. Department of Energy.
The H ion source at the LANSCE accelerator facility uses an 80 kV accelerating column to produce an H ion beam. A regulated power supply maintains the source and support equipment racks at -80kV with respect to local ground. As the facility’s H beam currents have been increased, voltage droop on the regulated -80 kV power supply has become one of the limiting factors on beam current. The previous regulator used a standard 120kV DC HV supply and a high power planar triode in series to regulate the voltage down to 80 kV and to stop the flow of current during an arcdown of the -80 kV accelerating column. In 2018 we devised a method of using a pair of standard, 50 kV capacitor charging supplies to produce the required 80 kV with minimal stored energy and significantly better voltage regulation over the beam pulse. This configuration has been tested on the Ion Source Test Stand and is being considered for installation on the main LANSCE linac. We will present the design, modeling and measured results of the new system as compared with the performance of the previous system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP053  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW003 Sirius Status Update storage-ring, booster, vacuum, alignment 1381
 
  • A.R.D. Rodrigues, F.C. Arroyo, J.F. Citadini, R.H.A. Farias, J.G.R.S. Franco, R. Junqueira Leão, L. Liu, S.R. Marques, R.T. Neuenschwander, C. Rodrigues, F. Rodrigues, R.M. Seraphim, O.H.V. Silva, F.H. de Sá
    LNLS, Campinas, Brazil
 
  Sirius is a 4th generation 3 GeV low emittance electron storage ring that is in its final installation phase at the Brazilian Center for Research in Energy and Materials (CNPEM) campus in Campinas, Brazil. Presently the injector installation is complete, and the storage ring installation is being finalized. Most subsystems are under test and tuning in real working conditions. Six beamlines are also under construction. In this paper we report on the Sirius main subsystems installation status.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW003  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW005 Preparation of the EBS Beam Commissioning SRF, MMI, storage-ring, injection 1388
 
  • S.M. Liuzzo, N. Carmignani, A. Franchi, T.P. Perron, K.B. Scheidt, E.T. Taurel, L. Torino, S.M. White
    ESRF, Grenoble, France
 
  In 2020 the ESRF storage ring will be upgraded to a Hybrid Multi Bend Achromat (HMBA) lattice. The commissioning of the new ring will require dedicated tools, either updated from the existing ones or newly developed. Most of the software and procedures were tested on the existing storage ring before its decommissioning. In particular we present experiments on first-turn steering and beam accumulation, check of magnet polarity and calibration, and injection tuning. The use of a control-system simulator proved to be crucial for the debugging of the software and the development of the new control system, as far as beam measurements and manipulations are concerned.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW005  
About • paper received ※ 26 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW032 Mode-Locked Pulse Oscillation of a Self-Resonating Enhancement Optical Cavity cavity, laser, resonance, feedback 1471
 
  • Y. Hosaka
    QST/Takasaki, Takasaki, Japan
  • Y. Honda, T. Omori, J. Urakawa
    KEK, Ibaraki, Japan
  • A. Kosuge
    ISSP, Kashiwa-shi, Japan
  • K. Sakaue
    The University of Tokyo, The School of Engineering, Tokyo, Japan
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
  • Y. Uesugi
    Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, Sendai, Japan
  • M. Washio
    Waseda University, Tokyo, Japan
 
  A power enhancement optical cavity is a compelling means of realizing a pulsed laser with a high peak power and high repetition frequency, which is not feasible using a simple amplifier scheme. However, a precise feedback system is necessary for maintaining the narrow resonance condition of the optical cavity; this has become a major technical issue in developing such cavities. We have developed a new approach that does not require any active feedback system, by placing the cavity in the outer loop of a laser amplifier. We report on the first demonstra-tion of a mode-locked pulse oscillation using the new system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW032  
About • paper received ※ 15 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW079 Exploratory Lattice Design Studies for Diamond-II lattice, emittance, optics, dynamic-aperture 1589
 
  • B. Singh, R. Bartolini, J. Bengtsson, H. Ghasem, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  We pursue Robust Design of a Ring-Based Synchrotron Light Source as a System. In particular, the Design Phi-losophy is based on: ’ To Control the Nonlinear Dynamics: Control the Linear Optics. In particular, by: ’ Optimal Control of Natural Chromaticity. ’ ’-I Transformer’ between Chromatic Sextupoles for Unit Cell. ’ Higher-Order-Achromat for Super Period. In addition, by pushing the Requirements for Robust & Efficient Injection ’Upstream’, i.e., by considering On-Axis Injection, and by utilizing Reverse Bends (to trans-cend the reductionist Theoretical Minimum Emittance Cell), either: ’ the Natural Emittance can be reduced further, ’ or the Touschek Lifetime can be improved. Bottom line, a Design Choice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW079  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW089 Tunable Bunch Train Generation Using Emittance Exchange Beamline With Transverse Wiggler wiggler, simulation, emittance, bunching 1612
 
  • G. Ha, M.E. Conde, J.G. Power, J.H. Shao, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
 
  Funding: This work is supported by LDRD program at Argonne National Laboratory and Department of Energy, Office of High Energy Physics, under Contract No. DE-AC02-06CH11357.
Emittance exchange beamline provides a unique correlation between the upstream transverse momentum and downstream longitudinal timing. Similar to the bunch train generation concept using energy modulation and chicane, the emittance exchange beamline can convert the transverse momentum modulation to the temporal modulation at the end of the beamline. The beam can obtain this transverse modulation from alternating magnet array (e.g. 90 degree rotated undulator). While most of other methods provide only one knob to control both micro-bunch length and bunch-to-bunch spacing or hard to control one of the knobs, this method provides separated knobs for the micro-bunch length and spacing and they are easy to control. These knobs enable to separately control the fundamental frequency of the radiation and its bandwidth. We plan to demonstrate this method at Argonne Wakefield Accelerator facility (AWA). This poster present progress on this new method and its demonstration at AWA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW089  
About • paper received ※ 21 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB001 Nanosecond Pulsing for Tandem Accelerator bunching, linac, experiment, injection 1673
 
  • P. Linardakis, N.R. Lobanov, D.C. Tempra
    Research School of Physics and Engineering, Australian National University, Canberra, Australian Capitol Territory, Australia
 
  Funding: The Australian Federal Government Superscience/EIF funding under the NCRIS mechanism
A pulsed system capable of delivering up to a few microampere bursts of ions with mass range M=1 - 100 amu with a duration of approximately 1 ns is described. The system consists of a negative ion source, three frequency harmonic buncher - which uses the entire tandem electrostatic accelerator as a drift path to produce bunched ion bursts at the targets or linac entry - and high energy choppers. The buncher consists of a single acceleration gap with aligned retractable grids.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB001  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB006 Effect of Electrostatic Deflectors and Fringe Fields on Spin for Hadron Electric Dipole Moment Measurements on Storage Rings storage-ring, dipole, polarization, vacuum 1691
 
  • J. Michaud, J.-M. De Conto, Y. Gómez Martínez
    LPSC, Grenoble Cedex, France
 
  The observed matter-antimatter asymmetry in the universe cannot be explained by the Standard Model. An explanation is a non-vanishing Electric Dipole Moment of subatomic particles. The JEDI (Jülich Electric Dipole moment Investigations) collaboration is preparing a direct EDM measurement of protons and deuterons first at the storage ring COSY (COoler SYnchrotron) and later at a dedicated storage ring. To achieve this, one needs a stable polarization, i.e. around 1000 seconds for spin coherence time. One source of decoherence are the electrostatic deflectors, and this must be quantified. We developed an analytical model for cylindrical deflectors, including fringe fields, and the associated beam and spin transfer functions, integrated over the deflector. All boundaries (including ground) are considered, giving a realistic, accurate field map up to any order. We get universal formulas, the only adjustable parameter being the deflector gap/radius ratio, all other terms being numerical. This has been implemented in BMAD. We present the mathematical, physical and numerical developments, as well as results for a proton storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB006  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB084 High Level Software Development Framework and Activities on VELA/CLARA hardware, operation, interface, simulation 1855
 
  • D.J. Scott, A.D. Brynes, M.P. King
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.D. Brynes, D.J. Scott
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The success of modern particle accelerators depends on good high level software. Over the past few years an integrated framework has been developed to better connect machine physicists to VELA/CLARA at the STFC’s Daresbury laboratory. This framework is comprised of a number of tools, including, a c++/Python API to interface to the EPICS control system with which all High Level Software can be developed. The API is encapsulated, extensible and designed to grow as further Phases of CLARA are installed. The API is seamlessly integrated with the VELA/CLARA virtual accelerator and other activities by the simulations group. As well as presenting the design choices and methodology we will give an overview of the first control room applications built using our tools and how they will form the basis for a new programme of machine learning and optimisation on CLARA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB084  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS008 The Pulsing Chopper-Based System of the Arronax C70XP Cyclotron cyclotron, solenoid, proton, injection 1948
 
  • F. Poirier
    CNRS - DR17, RENNES, France
  • G. Blain, M. Fattahi, F. Haddad, J. Vandenborre
    SUBATECH, Nantes, France
  • F. Bulteau-harel, X. Goiziou, C. Koumeir, A. Letaeron, F. Poirier
    Cyclotron ARRONAX, Saint-Herblain, France
 
  Funding: This work is, in part, supported by a grant from the French National Agency for Research called "Investissements d’Avenir", Equipex Arronax-Plus noANR-11-EQPX-0004 and LabexIRON noANR-11-LABX-18-01.
The Arronax Public Interest Group (GIP) uses a multi-particle cyclotron to perform irradiation from a few pA up to hundreds of uA on various experiments and targets *. To support further low intensity usage and extend the beam time structure required for experiments such as pulsed experiments studies (radiolysis, proton therapeutic irradiation) and high intensity impact studies, it has been devised a pulsing system in the injection of the cyclotron. This system combines the use of a chopper, low frequency switch, and a control system based on the new extended EPICS network. This paper details the pulsing system adopted at Arronax, the last results in terms of time structure, various low intensity experimental studies performed with alpha and proton beams and the dedicated photon diagnostics.
* F.Poirier et al., "Studies and Upgrades on the C70 Cyclotron Arronax", CYC16, September 2016, TUD02.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS008  
About • paper received ※ 12 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS045 Simulation Analysis of LLRF Feedforward Compensation to Beam Loading for CiADS LINAC cavity, simulation, beam-loading, feedback 2027
 
  • X.C. Xu, J.Y. Ma
    IMP/CAS, Lanzhou, People’s Republic of China
 
  A simulation is coded to calculate the beam loading in the cavity of CiADS and the response of the LLRF system. In the pulse operating mode, the fluctuation of amplitude and phase of the cavity field contributed by the transient beam loading is traced. During the simulation the effect of beam current fluctuation, and timing jitter were determined. The deviation margin of relational parameters is lined out to meet the requirement for cavity stability with amplitude 0.1% and phase 0.1°.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS045  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS065 RF Conditioning of the CLARA 400 Hz Photoinjector cavity, GUI, vacuum, operation 2067
 
  • L.S. Cowie, D.J. Scott
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Automated conditioning of the 400 Hz photoinjector for CLARA was begun and the conditioning program refined. The conditioning was performed at 100 Hz. Masks were used to detect breakdowns in the reflected power and phase, and the breakdown rate was limited to 5x106 breakdowns per pulse. The cavity gradient and breakdown rate evolution over the conditioning time is presented. Post-pulse multipactor and other evidence of electron effects were detected. Possible mechanisms for this are discussed. The conditioning was interrupted by breakdown in the waveguide after reaching 2.5 MW, and will be resumed after the planned 6 month shutdown of CLARA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS065  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS119 Status of the ESS Medium Beta Cavities at INFN - LASA cavity, status, HOM, niobium 2211
 
  • P. Michelato, M. Bertucci, A. Bignami, A. Bosotti, M. Chiodini, A. D’Ambros, L. Monaco, R. Paparella, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • S. Aurnia, O. Leonardi, A. Miraglia, G. Vecchio
    INFN/LNS, Catania, Italy
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
  • L. Sagliano
    ESS, Lund, Sweden
 
  INFN-LASA contributes in-kind to the European Spallation Source ERIC with 36 6-cell cavities for the Medium Beta section of the Superconducting Linac. After having developed the electromagnetic and mechanical models, few prototypes have been produced and tested. Based on this experience, we are now supervisioning the cavity production at the industry, the resonators test at DESY and the delivery to CEA at Saclay. In this paper, we report on the status of the overall INFN-LASA contribution including also document handling, interface data exchange and QA/QC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS119  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXPLM1 XFEL Operational Flexibility due to the Dechirper System electron, undulator, FEL, laser 2219
 
  • A.A. Lutman, K.L.F. Bane, Y. Ding, C. Emma, M.W. Guetg, E. Hemsing, Z. Huang, J. Krzywiński, J.P. MacArthur, G. Marcus, A. Marinelli, T.J. Maxwell, A. Novokhatski
    SLAC, Menlo Park, California, USA
  • G. Guo
    Stanford University, Stanford, California, USA
 
  Funding: U.S.Department of Energy, Office of Science, Laboratory Directed Research and Development (LDRD) program at SLAC National Accelerator Laboratory, under Contract No. DE-AC02-76SF00515.
The RadiaBeam/SLAC dechirper was installed to demonstrate the concept of using wakefields from a corrugated structure to change the energy profile along an electron bunch. Since installation, the system has allowed a large number of additional XFEL operating modes including fresh-slice two-color or three color operation, fresh-slice seeding, passive streaking, etc. This talk will discuss the results from using the dechirper system and possible implementation issues related to the high-rate LCLS-II.
Lutman, A. A. et al. Nat. Photon. 10, 745-750 (2016).; Nat. Photon. 10, 695-696 (2016); other papers in submission.
 
slides icon Slides WEXPLM1 [5.744 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEXPLM1  
About • paper received ※ 10 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXXPLS1 Magnetron R&D for High Efficiency CW RF Sources of Particle Accelerators injection, cavity, electron, klystron 2233
 
  • H. Wang, R.M. Nelson, R.A. Rimmer
    JLab, Newport News, Virginia, USA
  • B.R.L. Coriton, C.P. Moeller
    GA, San Diego, California, USA
  • A. Dudas, M.L. Neubauer
    Muons, Inc, Illinois, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177, DOE OS/NP STTR Grant DE-SC0013203 and DOE OS/HEP Accelerator Stewardship award 2019-2021.
The scheme of using a high efficiency magnetron to drive a superconducting or normal conducting radio frequency accelerator cavity needs not only injection phase locking but also amplitude modulation to compensate for the cavity’s microphonics, frequency change, variations of cavity voltage and beam current. To be able to do a fast and efficient modulation and to compensate the frequency pushing effect due to the anode current change, the magnetron’s magnetic field has to be trimmed by an external coil*. To facilitate this, a low eddy current magnetron body has been designed and built**. This paper will present the experimental results of such modulation on a conventional 2.45 GHz magnetron at the R&D test stand. In addition, the progresses on the injection lock test to a new 1497 MHz, 13kW magnetron prototype aimed for the CEBAF klystron replacement with newly built low level RF (LLRF) controller for the amplitude modulation will be reported. Based on these R&D results, a 915MHz, 2×75kW CW industrial heating type magnetron system is being developed to be used for the high efficiency (>80%) RF source to the electron accelerator for industrial applications.
* H. Wang, et al,THPAL145, proceedings of IPAC 2018.
** M. Neubauer, et al,THPAL042, proceedings of IPAC 2018.
 
slides icon Slides WEXXPLS1 [8.033 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEXXPLS1  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP008 A Consideration on the Transfer Function Between RQ Field and Slow Extraction Spill in the Main Ring of J-Parc extraction, feedback, experiment, operation 2315
 
  • K. Okamura, Y. Arakaki, S. Murasugi, R. Muto, Y. Shirakabe, M. Tomizawa, E. Yanaoka
    KEK, Ibaraki, Japan
  • T. Kimura
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  A 30 GeV proton beam accelerated in the J-PARC Main Ring (MR) is slowly extracted by the third integer reso-nant extraction and delivered to the hadron experimental facility. Increasing the duty of beam spill is one of the important issues in the slow extraction system. In the MR, the spill feedback system utilizing a digital signal processor (DSP) combined with EQ and RQ magnet is used to smooth the spill, where EQ defines a rough out-line of the slow extraction shape and RQ is used for the ripple cancelling. In this study, frequency domain charac-teristics between the current of RQ magnet and the beam spill was investigated by driving the RQ magnet with sinusoidal current, so that the transfer function from the current of RQ magnet to the spill signal is delivered.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP008  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW002 Standardising of Application Specific Implementations at the Australian Synchrotron interface, synchrotron, distributed, software 2460
 
  • R.B. Hogan, S. Chen, A. Michalczyk
    AS - ANSTO, Clayton, Australia
 
  There is a need for a flexible stand-alone device that can provide a synchronous standard interface, which can accept application specific add-ons. We are proposing the Chameleon device that will be designed around a Xilinx Zynq System on Module (SoM) and a standard VITA 57.1 HPC FMC. The proposed solution will allow the use of COTS or in-house designed FMC modules and interface with the control system through PoE+ enabled Ethernet connection. The Chameleon device will also be able to plug into a White Rabbit network to enable the high performance synchronisation capabilities. This device will reduce the cost of implementing application specific solutions to better support the growing demands of scientific research at the Australian Synchrotron.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW002  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW003 High-Level Applications for the Sirius Accelerator Control System EPICS, MMI, linac, GUI 2462
 
  • X.R. Resende, L. Liu, A.C.S. Oliveira, F.H. de Sá, G.L. do Prado
    LNLS, Campinas, Brazil
 
  Sirius is the new 3 GeV low-emittance Brazilian Synchrotron Light source under installation and commissioning at LNLS. The machine control system is based on EPICS and when the installation is complete it should have a few hundred thousand process variables in use. For flexible integration and intuitive control of such sizable system a considerable number of high-level applications, input/output controllers and graphical user interfaces have been developed, mostly in Python, using a variety of libraries, such as PyEpics, PCASPy and PyDM. Common support service applications (Archiver Appliance, Olog, Apache server, a mongoDB-based configuration server, etc) are used. Matlab Middle Layer is also an available option to control EPICS applications. Currently system integration tests are being performed concomitant with initial phases of accelerator commissioning and installation. A set of functionalities is already available: Linac’s control; timing subsystem control; machine snapshots; optics measurements and correction; magnets settings and cycling; Booster orbit acquisition and correction, and so on. From the experience so far, subsystems communications have worked satisfactorily but there has been a few unexpected component performance. In this paper we discuss this experience and descrive the libraries and packages used in high-level control system , as well as the difficulties faced to implement and to operate them.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW003  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW007 Progress of the Machine Control Upgrade at COSY/JüLICH EPICS, operation, experiment, quadrupole 2473
 
  • V. Kamerdzhiev, I. Bekman, C. Böhme, R. Gebel, B. Lorentz, P. Niedermayer, M. Simon, M. Thelen
    FZJ, Jülich, Germany
  • R. Modic, ’. Oven
    Cosylab, Ljubljana, Slovenia
 
  The Cooler Synchrotron COSY operated at the Research Center Jülich is undergoing staged machine control upgrades driven by the requirements of the JEDI (Jülich Electric Dipole moment Investigations) collaboration. The upgrades aim towards better beam control e.g. beam orbit, tune, and chromaticity control improvements. A better orbit control was achieved through the upgrade of BPM electronics and migration from initial Tcl/Tk based control system to Control System Studio (CSS) utilizing EPICS. Currently, a design for improved beam tune control is in development. The main part of work is the transition towards a faster and less restrictive magnet control. It further includes improved tune measurement tools as well as the migration of control for quadrupole magnets to EPICS. Ultimately the control of all systems should be centralized around EPICS to enable ease of operation, automation, setup of services, etc. The decision path, technical details of the upgrade and performance of the upgraded sub-systems are presented. We also showcase how the COSY team’s physics and research goals are complemented by Cosylab’s technical design and implementation to form a synergetic collaboration.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW007  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW021 Generic Digitization of Analog Signals at FAIR – First Prototype Results at GSI interface, software, hardware, operation 2514
 
  • R.J. Steinhagen, R. Bär, A. Franke, A. Krimm, K. Lüghausen, D. Ondreka, A. Schwinn, M. Thieme
    GSI, Darmstadt, Germany
 
  FAIR operation and notably the new FAIR Control Centre will be based on a ’fully-digital’ control paradigm for which about 300 generic digitizers covering analog bandwidths and sampling frequencies from a few MHz to a GHz will be deployed. The aim is to acquire all pertinent accelerator system and beam parameters to facilitate a multi-mission of continuous performance tracking, (semi-)automated feedbacks and setup tools, early detection and isolation of hardware failures or near-misses, and to provide a dependable generic platform for equipment experts that enable post-mortem analyses or remote diagnostics. The goal of the controls integration was to provide a generic abstraction of the vendor-specific electro-mechanical form-factor and software interfaces based on modern software-defined-radio (SDR) principles. In addition to a ns-level-syncronised time- and frequency-domain based acquisitions, the interface provides a wide range of generic user-configurable signal post-processing routines common for SDRs and also found in many modern benchtop oscilloscopes, spectrum- or vector-network analysers. The acquired raw and derived signals are exported to the FAIR control system using a standardised front-end software architecture (FESA) and a common middle-ware (CMW). Further integration goals were to simplify possible future extensions, compactness, readability, reusability, testability, and long-term maintainability of the code-based which led to the re-use of established open-source signal processing and data fitting frameworks such as GNU-Radio and ROOT. While explicitly kept open for new or other specific digitizer or SDRs, the initial integration, prototyping, and testing have been done for the PS3000-, PS4000-, and PS600-series of digitizers from Pico Technology.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW021  
About • paper received ※ 15 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW029 The Design of the Control System for the SACLA/SPring-8 Accelerator Complex to Use the LINAC of SACLA for a Full-Energy Injector of SPring-8 database, operation, storage-ring, injection 2529
 
  • T. Fukui
    RIKEN SPring-8 Center, Innovative Light Sources Division, Hyogo, Japan
  • T. Hara, N. Hosoda, T. Inagaki, H. Maesaka, T. Ohshima, H. Tanaka
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • T. Hasegawa, O. Morimoto, Y. Tajiri, S. Tanaka, M. Yoshioka
    SES, Hyogo-pref., Japan
  • S. Matsubara, K. Okada
    JASRI, Hyogo, Japan
  • M. Yamaga
    JASRI/SPring-8, Hyogo-ken, Japan
 
  At the SPring-8 site, the X-ray free electron laser facili-ty, SACLA, and the third-generation light source, SPring-8 storage ring, have been operated. On the SPring-8 up-grade project we have a plan to use the linac of SACLA as a full-energy injector of the storage ring. To achieve the SACLA’s user operation and the beam injection to the storage ring in parallel, it is necessary to control the beam energy and the peak current on a pulse by pulse. The demand for an injection occurs anytime during the top-up operation of the storage ring. For this purpose, two accel-erators should be controlled seamlessly and the SACLA has to provide the low emittance electron beam to gener-ate X-ray laser and to be an injector of the storage ring simultaneously. Because SACLA has to control the beam energy and peak current on a pulse by pulse, we are de-signing a system to meet these requirements. A master controller stores a pattern of parameters required for the low-level RF controllers. Each pattern consists of 60 rows which correspond to the parameters for one second with a beam repetition rate of the SACLA, 60Hz. The master sends the parameters to the controllers with reflective memory. We can select the pattern every second on de-mand and it is flexible enough for the top-up operation of the storage ring. Also the data of low-level RF and beam position monitor are stored into the database with a beam repetition rate. In this paper, we report the design of con-trol system for SACLA/SPring-8 to control the beam energy and the peak current on a pulse by pulse.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW029  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW043 Quality Assurance for CSNS Operation operation, database, interface, MMI 2575
 
  • L. Wang, M.T. Kang, X. Wu
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • C.P. Chu, F.Q. Guo, Y.C. He, D.P. Jin, Y.L. Zhang, P. Zhu
    IHEP, Beijing, People’s Republic of China
 
  Because CSNS (China Spallation Neutron Source) is now in early operation, the focus has been shifted from beam commissioning to reliable operation, therefore, a suite of QA tools are under development. These tools include Elog system and operation issue tracking system which can record events and track issue status in the process of operation. This paper will describe the application of QA tools in CSNS and the development progress of them.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW043  
About • paper received ※ 10 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW046 Key Technologies for Remote Detection of CSNS Radiation Environment vacuum, radiation, operation, target 2584
 
  • L. Kang, R.H. Liu, X.J. Nie, A.X. Wang, G.Y. Wang, D.H. Zhu
    IHEP, Beijing, People’s Republic of China
  • J.X. Chen, H.Y. He, L. Liu, C.J. Ning, J.B. Yu, Y.J. Yu, J.S. Zhang
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  Funding: Work supported by National Nature Science Foundation of China (11375217)
China Spallation Neutron Source (CSNS) has been continuously operating in September 2018. As the operating time increases the radiation dose will also increase, some equipment maintenance and testing must take special tools and equipment. This article mainly introduced the studies on radiation environment of several detection technologies, such as: remote vacuum leak detection methods and equipment, strong magnetic field environment vibration measuring technology, using Qr code tracing machine walking vehicle inspection system and remote image vision measurement technology, etc., these advanced technology also has a guiding significance to other related fields.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW046  
About • paper received ※ 23 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW073 Control System for Lasers at Hilase laser, EPICS, software, PLC 2641
 
  • J. Horáček, T. Mocek, M. Rehakova
    HiLASE Centre, Institute of Physics ASCR, v.v.i., Dolní Bře’any, Czech Republic
  • R. Modic, J. Podlipnik, M. Pogacnik
    Cosy lab, Ljubljana, Slovenia
 
  We present the current state of the HiLASE Centre con-trol system developed in cooperation with Cosylab. The aim of the development is to build a control system which would be in charge of the operation of kW-class in-house-developed laser beamlines. These beamlines deliv-er picosecond pulses with repetition rates between 1 kHz and 1 MHz and high-energy nanosecond pulses at 10 Hz. A generic control system architecture is presented, which can either support full-size development lasers or com-pact industrial versions. The EPICS control system work focuses on image ac-quisition and processing, vacuum control, provision of timing, archiving and user interfaces. HiLASE provides high-level requirements, Cosylab complements them, provides the design of the solution and implementation. Delivery is performed during on-site visits where a test plan is executed for acceptance. This approach relieves HiLASE of the need to hire and manage their own team while retaining full control over the functionality through requirements and acceptance approval. Cosylab complements HiLASE with self-managed teams that de-liver to specification.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW073  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW074 MYRRHA DAQ Development EPICS, GUI, LabView, software 2645
 
  • R. Modic
    Cosy lab, Ljubljana, Slovenia
  • P. Della Faille, D. Vandeplassche
    SCK•CEN, Mol, Belgium
  • P. Mekuc
    Cosylab, Ljubljana, Slovenia
 
  An approach to a generic Data Acquisition (DAQ) solution for the MYRRHA test stand at Louvain-la-Neuve (Belgium) will be described in this paper. Need for better sampling performance, signal quality, arbitrary processing and storage of measurements was a motivation for this work. A full integration of the DAQ system in the global EPICS control environment was a strong requirement. An intermediate DAQ platform was put in place to satisfy the control and experiment needs. The NI PXI platform is selected to minimize integration and development effort. NI LabVIEW is used to create a generic DAQ application. CALab library supported by BESSY is used to connect LabVIEW and EPICS. CSS GUI provides the user with the necessary control, visualization and configuration capability. The technical and organizational approach to the collaboration will be detailed in the paper. Necessary customizations of CSS and CALab and experience on using NI PXI for DAQ platform will be explained.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW074  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW079 A Channel Access Software Platform for Beam Dynamics Applications in Scripting Languages interface, EPICS, software, MMI 2661
 
  • J.T.M. Chrin, M. Aiba, J. Snuverink
    PSI, Villigen PSI, Switzerland
 
  To facilitate the seamless integration of EPICS (Experimental Physics and Industrial Control System) into high-level applications in particle accelerators, a dedicated modern C++ Channel Access Interface (CAFE) library* provides a comprehensive and user-friendly interface to the underlying control system. Functionality is provided for synchronous and asynchronous interaction of single and composite groups of channels, coupled with an abstract layer tailored towards beam dynamics applications and complex modelling of virtual accelerators. Equivalent consumable solutions in scripting and domain-specific languages can then be accelerated by providing bindings to the relevant methods of the interface platform. This is exemplified by CAFE’s extensive MATLAB interface, incarnated through a single MATLAB executable (mex) file, and a high performance Python interface written in the Cython programming language. A number of gratifying particularities specific to these language extension modules are revealed.
* http://cafe.psi.ch
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW079  
About • paper received ※ 15 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW085 Development of Operating Alarm System at TPS operation, vacuum, storage-ring, EPICS 2684
 
  • C.S. Huang, B.Y. Chen, C.K. Kuan, C.H. Kuo, T.Y. Lee, W.Y. Lin, S.Y. Perng, T.C. Tseng, H.S. Wang
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) has many subsystems which includes magnet, power supply, vacuum, RF system, insertion device, control system, etc. Therefore, the operational and system check procedures are complex. In this paper, we summarize the routine operational procedures and propose an integrated operational alarm system that gathers machine information and sets high/low warning and fault limits for various signals which can help operators to quickly identify abnormal subsystems, thereby reducing machinery down time. The alarm system also has a wide range of applications, such as the event recording that helps the analysis after event. This new alarm system interface clearly indicates the machine status and improves operational efficiency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW085  
About • paper received ※ 15 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW087 Control System Studio to Monitor Front End and Beamlines Status as well as Light Source Stability electron, status, operation, photon 2687
 
  • W.Y. Lin, B.Y. Chen, C.S. Huang, C.H. Kuo, T.Y. Lee
    NSRRC, Hsinchu, Taiwan
 
  The primary task during a shift change at the Taiwan Photon Source Accelerator Operations team is to know the exact status of the machine, so that problems can be discovered immediately and solved when the machine behaves abnormal. To provide a stable beam during top-up operation, it is necessary to monitor closely the stability of the light source, of front end areas and beamlines. Should any abnormality occur, the operator would initiate initial troubleshooting and adjustments, inform users and sub-system staff members and perform subsequent first anal-yses and system optimizations. In this article, we describe how to sort through the nec-essary information with the Control System Studio (CSS) design page. There are currently seven beamlines in operation at the Taiwan Photon Source (05, 09, 21, 23, 25, 41, 45) and more new beamlines will be added in the future. Com-pared with other tools, CSS is intuitive and easy to revise. No matter weather adding new parameters or changing settings, the operation team can quickly get familiar with the machine status and perform an interface upgrade.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW087  
About • paper received ※ 27 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW122 EXPERIMENTAL VERIFICATION OF TRANSPARENT SPIN MODE IN RHIC polarization, collider, experiment, resonance 2783
 
  • V.S. Morozov, Y.S. Derbenev, F. Lin, Y. Zhang
    JLab, Newport News, Virginia, USA
  • P. Adams, H. Huang, F. Méot, V. Ptitsyn, W.B. Schmidke
    BNL, Upton, Long Island, New York, USA
  • Y. Filatov
    MIPT, Dolgoprudniy, Moscow Region, Russia
  • H. Huang
    ODU, Norfolk, Virginia, USA
  • A.M. Kondratenko, M.A. Kondratenko
    Science and Technique Laboratory Zaryad, Novosibirsk, Russia
 
  Funding: Supported in part by the U.S. DoE under Contract No. DE-AC05-06OR23177 and by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DoE.
High electron and ion polarizations are some of the key design requirements of a future Electron Ion Collider (EIC). The transparent spin mode, a concept inspired by the figure 8 ring design of JLEIC, is a novel technique for preservation and control of electron and ion spin polarizations in a collider or storage ring. It makes the ring lattice "invisible" to the spin and allows for polarization control by small quasi-static magnetic fields with practically no effect on the beam’s orbital characteristics. It offers unique opportunities for polarization maintenance and control in Jefferson Lab’s JLEIC and in BNL’s eRHIC. The transparent spin mode has been demonstrated in simulations and we now plan to test it experimentally. We present a design of an experiment using a polarized proton beam stored in one of the RHIC rings. In the experiment, one of the RHIC rings is configured in the transparent spin mode by aligning the axes of its two Siberian snakes. The experiment goals, procedures, hardware requirements and expected results are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW122  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW124 Spin Response Function for Spin Transparency Mode of RHIC resonance, collider, polarization, lattice 2791
 
  • V.S. Morozov, Y.S. Derbenev, F. Lin, Y. Zhang
    JLab, Newport News, Virginia, USA
  • P. Adams, H. Huang, F. Méot, V. Ptitsyn, W.B. Schmidke
    BNL, Upton, Long Island, New York, USA
  • Y. Filatov
    MIPT, Dolgoprudniy, Moscow Region, Russia
  • H. Huang
    ODU, Norfolk, Virginia, USA
  • A.M. Kondratenko, M.A. Kondratenko
    Science and Technique Laboratory Zaryad, Novosibirsk, Russia
 
  Funding: Supported by the U.S. DoE under Contracts No. DE-AC05-06OR23177 and DE-AC02-98CH10886.
In the Spin Transparency (ST) mode of RHIC, the axes of its Siberian snakes are parallel. The spin tune in the ST mode is zero and the spin motion becomes degenerate: any spin direction repeats every particle turn. In contrast, the lattice of a conventional collider determines a unique stable periodic spin direction, so that the collider operates in the Preferred Spin (PS) mode. Contributions of perturbing magnetic fields to the spin resonance strengths in the PS mode are usually calculated using the spin response function. However, in that form, it is not applicable in the ST mode. This paper presents a response function formalism expanded for the ST mode of operation of conventional colliders with two identical Siberian snakes in the highly-relativistic limit. We present calculations of the spin response function for RHIC in the ST mode.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW124  
About • paper received ※ 01 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB003 Parametric Pumped Oscillation by Lorentz Force in Superconducting Rf Cavity cavity, feedback, acceleration, klystron 2798
 
  • K. Fong, R. Leewe
    TRIUMF, Vancouver, Canada
 
  Mechanical instabilities have been observed in superconducting RF cavities, when multiple cavities are driven by a single klystron and these cavities are regulated by vector-summing the outputs from these cavities. A nonlinear theory has been developed to study the source of this mechanical instability, which is due to the coupling between Lorentz force detuning and mechanical oscillation by parametric pumping. Analytical and numerical analysis of this model show regions of stability, limit cycles and instabilities. These results are in agreement with the observed oscillations by TRIUMF eLinac Acceleration Module.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB003  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB004 Sawtooth Generation and Regulation with a Single FPGA for TRIUMF’s ARIEL Prebuncher LLRF, FPGA, cavity, pick-up 2801
 
  • X.L. Fu, T. Au, K. Fong, Q. Zheng
    TRIUMF, Vancouver, Canada
 
  TRIUMF’s ARIEL prebuncher is powered by a sawtooth waveform which is the combination of an 11.79MHz, a 23.57MHz and a 35.36MHz components. The generation, control and regulation of these three components are all incorporated digitally inside a single FPGA. This FPGA can be standalone or inserted inside a VXI module. Commands and controls of these components can be directly through Ethernet, or indirectly through register-base or message-base VXI addresses.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB004  
About • paper received ※ 10 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB007 RF Commissioning of the SPIRAL2 RFQ in CW Mode and Beyond Nominal Field cavity, LLRF, rfq, vacuum 2804
 
  • M. Di Giacomo, R. Ferdinand, H. Franberg, J.-M. Lagniel, G. Normand
    GANIL, Caen, France
  • M. Desmons, P. Galdemard, Y. Lussignol, O. Piquet, S. Sube
    CEA-DRF-IRFU, France
 
  The SPIRAL2 RFQ was recently successfully commissioned at nominal voltage of 114 kV, corresponding to 1.65 Kilpatrick factor. The paper describes limitations of the RFQ main subsystems, cavity conditioning difficulties, as well as changes implemented in the LLRF and automatic procedures to simplify turn on and operation of the whole system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB007  
About • paper received ※ 26 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB010 RF Power Test of the Rebuncher for Saraf-Linac cavity, EPICS, linac, MEBT 2815
 
  • L. Zhao, R. Berthier, F. Gougnaud, P. Guiho, N. Solenne, D. Uriot, X.W. Zhu
    CEA-DRF-IRFU, France
  • R. Braud, D. Chirpaz-Cerbat, J. Dumas, R.D. Duperrier, F. Gohier, T.J. Joannem, S. Ladegaillerie, C. Marchand, O. Piquet
    CEA-IRFU, Gif-sur-Yvette, France
  • M. Di Giacomo, J.F. Leyge, M. Michel
    GANIL, Caen, France
  • B. Kaizer, L. Weissman
    Soreq NRC, Yavne, Israel
 
  Funding: SNRC
Three normal conducting rebunchers will be installed at the Medium Energy Beam Transport (MEBT) of the SARAF-LINAC phase II [saraf]. The MEBT line is designed to follow a 1.3 MeV/u RFQ, is about 5 m long, and contains three 176 MHz rebunchers providing a field integral of 105 kV. CEA is in charge of the design and fabrication of the Cu plated stainless steel, 3-gap rebuncher. The high power tests and RF conditioning have been successfully performed at the CEA Saclay on the first cavity. A solid state power amplifier, which has been developed by SNRC and has been used for the RF tests. The cavity has shown a good performance according to calculations, regarding the dissipated power, peak temperatures and coupling factor. RF conditioning was started with a duty cycle of 1\% and increased gradually until continuous wave (CW), which is the nominal working mode in SARAF-LINAC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB010  
About • paper received ※ 09 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB016 Simulation of Quench Detection Algorithms for Helmholtz Zentrum Berlin SRF Cavities cavity, SRF, FPGA, LLRF 2834
 
  • P. Echevarria, A. Neumann, A. Ushakov
    HZB, Berlin, Germany
  • B. Garcia
    UPV-EHU, Leioa, Spain
  • J. Jugo
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  The Helmholtz Zentrum Berlin is carrying out two accelerator projects which make use of high gradient SRF cavities: BERLinPro* and BESSY-VSR**. In both projects, a prompt detection of a quench is crucial to avoid damages in the cryomodules and cavities themselves. In this paper, the response of real time estimation of the cavity parameters*** using the transmitted and forward RF signals is simulated, in order to perform the quench detection. The time response of the estimated half bandwidth is compared with the dissipated power in the cavity walls for the different type of SRF cavities used in both projects, i.e., BERLinPro’s photoinjector, booster and linac, and BESSY-VSR 1.5 GHz and 1.75 GHz cavities. As an intermediate step prior to the implementation in an mTCA.4 system together with the LLRF control and test with a real cavity, the algorithm has been implemented using a National Instruments FPGA board to check the its proper behavior.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB016  
About • paper received ※ 16 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB017 Operational Experiences with X-Ray Tomography for SRF Cavity Shape and Surface Control cavity, gun, detector, simulation 2838
 
  • H.-W. Glock, J. Knobloch, A. Neumann, Y. Tamashevich
    HZB, Berlin, Germany
  • M. Böhnel, N. Reims
    Fraunhofer IIS EZRT, Fürth, Germany
  • J. Kinzinger
    X-RAY LAB, Sachsenheim, Germany
 
  X-ray tomography has established as a non-destructive three-dimensional analysis tool, commercially offered by industrial vendors. Typical applications cover shape control and failure detection (voids, cracks) deep inside of complicated bulk pieces like engine blocks, bearings, turbine blades etc. We evaluated the applicability of the process for superconducting radio frequency cavities, in particular the 1.4-cell 1.3 GHz BERLinPro electron gun cavity and the 1.5 GHz single-cell VSR cavity prototype. The former experienced severe shape modifications during its tuning process and features a complicated internal stiffening construction. Thus it is a demanding challenge to measure its actual internal cavity surface shape after the complete preparation process with a resolution, sufficiently high (better than 0.2 mm) to serve as input for meaningful comparative field simulations. First tests with a vendor’s on-site X-ray source, operating at X-ray energies up to 590 keV revealed an insufficient resolution of the inner surface, attributed to the unfavorable X-ray damping characteristics of niobium. This was overcome with the aid of an accelerator-based source (X-ray spectrum up to 9 MeV), operated by Fraunhofer IIS, Fürth, Germany. Results both show significant, while understood, shape changes and indicate partial inner surface modifications of the gun cavity. Further the data evaluation process, which was needed to provide input for field simulations, raised issues because of the data set size and complexity, which are discussed in the paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB017  
About • paper received ※ 17 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB026 Simulations of Beam Loading Compensation in a Wideband Accelerating Cavity Using a Circuit Simulator Including a LLRF Feedback Control cavity, feedback, simulation, vacuum 2863
 
  • F. Tamura, M. Nomura, T. Shimada, M. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • M. Furusawa, K. Hara, K. Hasegawa, C. Ohmori, Y. Sugiyama, M. Yoshii
    KEK, Tokai, Ibaraki, Japan
 
  Magnetic alloy cavities are employed in the J-PARC RCS to generate high accelerating voltages. The cavity, which is driven by a vacuum tube amplifier, has a wideband frequency response and the beam loading in the cavity is multiharmonic. Therefore, the tube must generate a multiharmonic output current. An LTspice circuit model is developed to analyze the vacuum tube operation and the compensation of the multiharmonic beam loading. The model includes the cavity, tube amplifier, beam current, and LLRF feedback control. The feedback control consists of the I/Q demodulator including low pass filters, PI control, and I/Q modulator. In this presentation, we present the implementation of the LLRF functions in the LTspice simulations. The preliminary simulation results are also presented. The simulations fairly agree with the beam test results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB026  
About • paper received ※ 23 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB037 Development of EP System at IHEP cavity, MMI, power-supply, cathode 2890
 
  • S. Jin, J.P. Dai, J. Dai, H.F.S. Feisi, J. Gao, D.J. Gong, Z.Q. Li, Z.C. Liu, W.M. Pan, P. Sha, Y. Sun, J.Y. Zhai, P. Zhang
    IHEP, Beijing, People’s Republic of China
 
  Electropolishing (EP) is a necessary technology for high quality cavities including both high accelerating gradient and high quality factor cavities, which will be used for several future large projects such as CEPC, Shanghai hard X-ray FEL, ILC, and so on. An EP system was development at IHEP, CAS. In last years, we finished all the engineering design and fabrication including functional circulation loops design, system parameters choices, key equipment choice or design, components test and fabrication. According to the functions of various components, the whole system were divided into three main units: electrolyte mixing, acid solution and mechanical platform, and several key components such as rotation sleeves, DC power supply and so on. Since the system is designed for both R&D and mass production, several characteristics comparing with those in other labs in the world can be realized, including dozens of solution circulations, electrolyte mixing, new and old acid separation, cavity outside water cooling, cathode vertical assembly, and compatible for several types of cavities. We will report them in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB037  
About • paper received ※ 21 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB078 RF Commissioning and Performance in the CBETA ERL cavity, operation, linac, LLRF 3003
 
  • N. Banerjee, K.E. Deitrick, J. Dobbins, G.H. Hoffstaetter, R.P.K. Kaplan, M. Liepe, C.W. Miller, P. Quigley, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was supported by the New York State Energy Research and Development Authority, Contract No. DE-SC0012704 with the U.S. Department of Energy and NSF award DMR-0807731.
The Cornell-BNL ERL Test Accelerator (CBETA) is a new multi-turn energy recovery linac currently being commissioned at Cornell University. It uses a superconducting main linac to accelerate electrons by 36 MeV and recover their energy. The energy recovery process is sensitive to fluctuations in the accelerating field of all cavities. In this paper, we outline our semi-automated RF commissioning procedure, which starts from automatic coarse tuning of the cavity all the way to adjusting the field control loops. We show some results of using these tools and describe the recent performance of the RF system during our ongoing commissioning phase.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB078  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB080 Optimization of RF Cavities Using MOGA for ALS-U cavity, impedance, simulation, gun 3007
 
  • H.Q. Feng, K.M. Baptiste, D. Li, T.H. Luo
    LBNL, Berkeley, California, USA
  • H.Q. Feng, W.-H. Huang, Z.N. Liu, C.-X. Tang
    TUB, Beijing, People’s Republic of China
 
  Funding: Director of Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
A multi-objective genetic algorithm-based optimiza-tion process has been applied to optimize the RF design of a 500 MHz main cavity and a 1.5 GHz Higher Harmon-ic Cavity (HHC) for the Advanced Light Source upgrade (ALS-U) in Lawrence Berkeley National Laboratory (LBNL). For the main cavity, a significant improvement, compared with the existing ALS cavity, has been achieved in cavity shunt impedance and power loss den-sity simultaneously. The field strengths and distribution of the optimized structure are analysed for further re-search. For the HHC, a cavity with low R/Q has been pre-liminary designed to mitigate the beam instability. This study also serves as an example of how a genetic algo-rithm can be used for optimizing RF cavities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB080  
About • paper received ※ 16 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS066 Suppression of Correlated Energy Spread Using Emittance Exchange cavity, linac, simulation, electron 3275
 
  • J. Seok, M. Chung
    UNIST, Ulsan, Republic of Korea
  • M.E. Conde, G. Ha, J.G. Power
    ANL, Argonne, Illinois, USA
 
  An emittance exchange (EEX) provides a precise longitudinal phase space manipulation of electron bunch. It has been studied for an easy and precise control of temporal distribution, but controls of energy distribution have not been explored. Since the energy control using EEX is under the identical principle to the temporal control, the EEX beamline can control a correlated energy spread of the electron bunch. This would benefit accelerator facilities requiring a low energy spread such as X-ray Free Electron Laser Oscil-lator (XFELO). In this paper, we present principle and preliminary simulation work on the suppression of correlated energy spread using the EEX beamline. ing the EEX beamline.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS066  
About • paper received ※ 21 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS100 The ESR Closed Orbit Calculation and Simulation simulation, electron, experiment, MMI 3349
 
  • S. Dastan, S. Dastan, R. Saffari
    University of Guilan, Rasht, Iran
  • S. Dastan, J. Rahighi
    ILSF, Tehran, Iran
  • S. Livinov, M. Steck
    GSI, Darmstadt, Germany
 
  The commissioning of the ESR with a new control system based on the LSA (LHC System Architecture) has started recently. This new control system is under development and considers all aspects of the expected functionality to operate the GSI/FAIR accelerators and incorporates the present GSI controls infrastructure*. Two years ago, the old control system which was based on outdated computers and operating system, was discontinued. So, both the heavy ion synchrotron SIS-18 and the Experimental Storage Ring (ESR) operation from now on have to be performed with the new FAIR control system. In order to introduce an improved model to the control system change, new calculations and simulations for SIS and ESR are necessary. In this paper we summarize the results of closed orbit calculations for the ESR which are done with three different codes, namely: ELEGANT*, MAD-X and MIRKO. Also, because the results of ELEGANT and MAD-X in this issue are similar to each other, we present ELEGANT results in the report.
* R. Bär, DEVELOPMENT OF A NEW CONTROL SYSTEM FOR THE FAIR ACCELERATOR COMPLEX AT GSI. Kobe.
** Borland, M., elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS100  
About • paper received ※ 29 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS118 Results of CEA Tests of SARAF Couplers Prototypes vacuum, cavity, EPICS, linac 3382
 
  • G. Ferrand, Y. Baron, S. Bouaziz, D. Chirpaz-Cerbat, R. Cubizolles, F. Gohier, S. Ladegaillerie, A. Lotode, C. Madec, G. Monnereau, N. Pichoff, O. Piquet
    CEA-IRFU, Gif-sur-Yvette, France
  • C. Boulch, E. Fayette, P. Guiho, Y. Lussignol, C. Servouin
    CEA-DRF-IRFU, France
 
  CEA is committed to delivering a Medium Energy Beam Transfer line and a superconducting linac (SCL) for SARAF accelerator in order to accelerate 5 mA beam of either protons from 1.3 MeV to 35 MeV or deuterons from 2.6 MeV to 40 MeV. The SCL consists in 4 cryomodules. The first two cryomodules host 6 and 7 half-wave resonator (HWR) low beta cavities (β = 0.09) at 176 MHz. The last two identical cryomodule will host 7 HWR high-beta cavities (β = 0.18) at 176 MHz. The maximal required power to be transmitted to the beam is 11.4 kW for high-beta cavity couplers. This document presents the results of the coupler tests and conditioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS118  
About • paper received ※ 23 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXPLS1 Review of Ion Therapy Machine and Future Perspective radiation, synchrotron, operation, proton 3391
 
  • K. Noda
    NIRS, Chiba-shi, Japan
 
  Cancer therapy with ion beams presents several advantages as compared to proton therapy or conventional radiation therapy but its diffusion is limited by the size and cost of the accelerator facility. The ion therapy facilities are presently in operation have generated important developments in particular to the gantry, beam delivery technique, and beam scanning system, while new treatment facilities being planned in United States, Europe, and Asia. This talk will present the current status of this field, as well as the future perspective.  
slides icon Slides THXPLS1 [26.303 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THXPLS1  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYPLS1 RF Controls Towards Femtosecond and Attosecond Precision cavity, LLRF, detector, FEL 3414
 
  • F. Ludwig, J. Branlard, L. Butkowski, M.K. Czwalinna, M. Hierholzer, M. Hoffmann, M. Killenberg, T. Lamb, J. Marjanovic, U. Mavrič, J.M. Müller, S. Pfeiffer, H. Schlarb, Ch. Schmidt, L. Springer
    DESY, Hamburg, Germany
  • M. Kuntzsch, K. Zenker
    HZDR, Dresden, Germany
 
  In the past two decades, RF controls have improved by two orders in magnitude achieving meanwhile sub-10 fs phase stabilities and 10-4 amplitude precision. Advances are through improved field detection methods and massive usage of digital signal procession on very powerful field programmable gate arrays (FPGAs). The question rise, what can be achieved in the next 10 years? In this talk, a review is given of existing systems and strategies, current stability limitations of RF control system and new technologies with the potential to achieve attosecond resolutions.  
slides icon Slides THYPLS1 [10.328 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THYPLS1  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYYPLS1 On-Demand Beam Route and RF Parameter Switching System for Time-Sharing of a Linac for X-ray Free-Electron Laser as an Injector to a 4th-Generation Synchrotron Radiation Source linac, FEL, electron, injection 3427
 
  • H. Maesaka, T. Fukui, T. Hara, T. Inagaki, H. Tanaka
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • T. Hasegawa, O. Morimoto, Y. Tajiri, S. Tanaka, M. Yoshioka
    SES, Hyogo-pref., Japan
  • N. Hosoda, S. Matsubara, T. Ohshima
    JASRI/SPring-8, Hyogo-ken, Japan
  • C. Kondo, K. Okada, M. Yamaga
    JASRI, Hyogo, Japan
 
  We have an upgrade plan of the SPring-8 storage ring to provide much more brilliant X-rays with a low-emittance electron beam. Since the upgraded ring requires a low-emittance injection beam, we are planning to timeshare the linac of the X-ray free electron laser (XFEL) facility, SACLA, as an injector for the upgraded ring. The SACLA linac delivers low-emittance and short-bunch electron beams to two XFEL beamlines with a 60 Hz repetition rate. The beam route is right now equally changed by a kicker magnet at a switchyard. The beam parameter is also optimized for each XFEL beamline by changing RF parameters pulse-by-pulse with simple software at this moment*. Since the number of beam injection shots to the storage ring is much less frequent than XFEL shots, one of the XFEL shots must be overridden by an injection with on-demand basis. In addition, the beam quality, such as 1 mm mrad normalized emittance, 10 fs bunch length and 10 kA peak current, must be maintained not to deteriorate the XFEL performance. Therefore, we have developed an on-demand beam route and RF parameter switching system with sufficient speed, precision and reliability. A beam route data is transmitted to each accelerator unit by a reflective memory network, and special software changes the parameters of each accelerator unit pulse-by-pulse according to the received data. We tested the on-demand switching system at a test bench and the SACLA linac. The beam parameters were appropriately controlled with a negligible failure rate. The user service of the beam injection from SACLA to SPring-8 is scheduled in 2020 and the on-demand switching system is almost ready for the time-sharing operation of multiple XFEL beamlines and a SPring-8 injection.
* T. Hara et al., Phys. Rev. Accel. Beams 21, 040701 (2018).
 
slides icon Slides THYYPLS1 [8.519 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THYYPLS1  
About • paper received ※ 16 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYYPLS3 A Remote-Controlled Robot-Car in the TPS Tunnel photon, radiation, operation, laser 3435
 
  • T.Y. Lee, B.Y. Chen, T.W. Hsu, B.Y. Huang, C.H. Kuo, W.Y. Lin
    NSRRC, Hsinchu, Taiwan
 
  A remote-controlled robot-car named ’PhotonBot’ was put into the TPS accelerator tunnel and is equipped with a 360 degrees LiDAR for SLAM and navigation, two cameras for perception and first-person view, and a thermal imaging system. The robot can be remotely controlled and can send data to a remote PC through Wi-Fi. With SLAM, it can go more freely without being restricted to a designated path. In order to ensure it can work continuously, there is a wireless charging station in case of a low battery.  
slides icon Slides THYYPLS3 [18.013 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THYYPLS3  
About • paper received ※ 09 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP007 MICROTCA TECHNOLOGY LAB AT DESY: CURRENT CASES IN TECHNOLOGY TRANSFER operation, LLRF, hardware, electron 3459
 
  • T. Walter, I. Mahns, H. Schlarb
    DESY, Hamburg, Germany
 
  Funding: The MicroTCA Technology Lab (A Helmholtz Innovation Lab) is supported by the Helmholtz Association under grant HIL-002.
MicroTCA-based LLRF systems for beam control and beam diagnostics are gaining traction in many facilities around the world. Over the past decade, a comprehensive portfolio of hardware solutions (boards, crates, backplanes) has become available to cater for demanding signal processing applications in state-of-the-art facilities like the European XFEL. Gradually, industrial applications of MicroTCA also have become more common. In response various requests, DESY has opened the MicroTCA Technology Lab (A Helmholtz Innovation Lab) in April 2018 as a service unit for research and industry with a focus on: - Customer-specific developments in MicroTCA (hardware, firmware, software), - High-end test and measurement services, - Consulting and system integration. We report on intermediate results and emerging projects after one year of operation, with transfer examples from the industrial automation and medical technology sectors as well as overlapping developments for the physics research community.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP007  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP009 LATINO: A Laboratory in Advanced Technologies for Innovation vacuum, laser, radio-frequency, operation 3466
 
  • L. Sabbatini, D. Alesini, A. Falone, A. Gallo
    INFN/LNF, Frascati (Roma), Italy
  • V. Pettinacci
    INFN-Roma, Roma, Italy
 
  Funding: The LATINO project is co-funded by the Regione Lazio within POR-FESR 2014-2020 European activities (public call ’Open Research Infrastructures’).
LATINO (a Laboratory in Advanced Technologies for INnOvation) is an open Research Infrastructure that will be hosted at the Frascati National Laboratories (LNF) of the Italian National Institute for Nuclear Physics (INFN). LATINO will allow the scientific community and the SMEs to get access to the technologies and competences developed for particle accelerators. The Infrastructure will be organized in four Laboratories: Radio Frequency, Vacuum and Thermal Treatments, Magnetic Measurements, Mechanical Integration. The list of the available instruments will include, besides others, a high power X-Band station to test cavities up to 50 Hz repetition rate and 200 MW input power, a network analyser to characterize microwave devices up to 100 GHz, a ultra high vacuum oven for thermal treatments and brazing, an outgassing measurement system to characterize vacuum materials, a stretched wire bench and a rotating coil for the magnetic field measurements of multipoles, environment and laser scanners. The regional and national industrial background comprises a remarkable number of highly qualified small and medium enterprises that could take advantage of the technologies offered by LATINO infrastructure to develop novel products within the Key Enabling Technologies and to get the access to new market segments. The Infrastructure will be fully operational at the beginning of 2020. For further information please visit www.latino.lnf.infn.it.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP009  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP039 How Robust Are Existing Medical Linacs in Challenging Environments? A Study of Down Time and Failure Causes. linac, electron, vacuum, gun 3530
 
  • S.L. Sheehy, L. Wroe
    JAI, Oxford, United Kingdom
  • A.J. Egerton
    Egerton Consulting Ltd, Minety, Malmesbury, Wiltshire, United Kingdom
  • A. Steinberg
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
 
  There is a severe lack of radiotherapy linear accelerators (LINACs) in Low- and Middle-Income countries (LMICs), limiting capacity for cancer care in these regions. Anecdotally, operating high tech accelerators in environments with power fluctuations, harsh climatic conditions and geographic isolation leads to large failure rates and downtime. To guide future developments, this study presents a data-driven approach to collect statistical data on LINAC downtime and failure modes, comparing to a simple availability model.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP039  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP041 A Comparative Study of Biological Effects of Electrons and Co-60 Gamma Rays on pBR322 Plasmid DNA radiation, electron, experiment, proton 3533
 
  • K.L. Small, R.M. Jones
    UMAN, Manchester, United Kingdom
  • D. Angal-Kalinin, M. Surman
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A. Chadwick, N.T. Henthorn, K. Kirkby, M.J. Merchant, R. Morris, E. Santina
    The Christie NHS Foundation Trust, Manchester, United Kingdom
  • R. Edge
    Dalton Cumbrian Facility, University of Manchester, Cumbria, United Kingdom
  • R.J. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Very High-Energy Electron (VHEE) therapy is a rapidly developing field motivated by developments in high-gradient linacs. Advantages include sufficient penetration (>30 cm) for treatment of deep-seated tumours, measured insensitivity to inhomogeneities and rapid delivery time, making VHEE viable for treatment of heterogeneous regions, e.g. lung or bowel. Researchers at the University of Manchester and CERN have routinely produced accelerating gradients of ~100 MeV/m for the CLIC project. Suitable modification can result in a high gradient medical linac producing 250 MeV electrons within a treatment room. Radiobiological research for VHEE is vital to understand its use in radiotherapy and how it compares with conventional modalities. The goal of radiotherapy is to destroy tumour cells while sparing healthy cells, primarily by damaging DNA within the cancer cell. The study aim is to understand the fundamental interactions between VHEE and biological structures through plasmid irradiation studies - both computational, using the Monte Carlo GEANT4-DNA code, and experimental. Plasmid irradiation experiments have been carried out at using Co-60 gammas at the Dalton Cumbrian Facility and using 6-15 MeV electrons at the Christie NHS Foundation Trust to determine the type and quantity of damage caused to DNA by electron irradiation. These experiments are a world first in VHEE radiobiology, with further studies planned at higher energies using the CLARA and CLEAR facilities at Daresbury and CERN. These studies will also consider the effective dose range of VHEE with energy, as well as implications of damage on DNA. Research into this area of radiotherapy can provide a valuable addition to tools currently available to physicians in the fight against cancer.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP041  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP052 Recent Progress in R&D for Ionetix Ion-12SC Superconducting Cyclotron for Production of Medical Isotopes cyclotron, ion-source, target, cathode 3568
 
  • X. Wu, G.F. Blosser, G.S. Horner, Z.S. Neville, J.M. Paquette, N.R. Usher, J.J. Vincent
    Ionetix, Lansing, Michigan, USA
  • D.M. Alt
    NSCL, East Lansing, Michigan, USA
 
  The Ion-12SC is a sub-compact, 12.5 MeV proton su-perconducting isochronous cyclotron for commercial medical isotope production recently developed at Ionetix Corporation [1]. The machine features a patented cold steel and cryogen-free conduction cooling magnet, a low power internal cold-cathode PIG ion source, and an inter-nal liquid target [2]. It was initially designed to produce N-13 ammonia for dose on-demand cardiology applica-tions but can also be used to produce F-18, Ga-68 and other medical isotopes widely used in Positron Emission Tomography (PET). The 1st engineering prototype was completed and commissioned in September 2015, and four additional units have been completed since [3]. The first two units have been installed and operated at the University of Michigan and MIT. R&D efforts in physics and engineering have continued to improve machine performance, stability and reliability. These improve-ments include: 1) Water cooling added to the dummy dee to limit the operating temperature of the ion source to improve lifetime and performance, 2) Magnetic field maps, obtained with a Hall probe based mapper, were used to accurately measure the isochronism and provide information needed to compensate for any unwanted 1st harmonics and 3) Feedback based control methods ap-plied to regulate the beam intensity on target by adjusting the ion source cathode current. The C1 unit installed at the University of Michigan Medical School early this year treated ~100 patients/month with N-13 ammonia. The machines are now capable of routinely producing > 21 doses/day with > 99% availability. The Ionetix manu-facturing facility is capable of producing up to 30 ma-chines per year.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP052  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW044 Highly Stable Linearly Polarized Arbitrary Temporal Shaping of Picosecond Laser Pulses laser, polarization, experiment, flattop 3682
 
  • F. Liu, S. Huang, K.X. Liu
    PKU, Beijing, People’s Republic of China
  • S. Zhang
    JLab, Newport News, Virginia, USA
 
  This paper reports the study and demonstration of a new variable temporal shaping method capable of generating linearly polarized picosecond laser pulses with arbitrary predefined shapes, which are highly desired by various applications including low emittance high brightness electron bunch generation in photocathode guns. It is found that both high transmittance and high stability of the shaped pulses can be achieved simultaneously when crystals are set at specific phase delay through the fine control of the crystal temperature. Such variable temporal shaping technique may lead to new opportunities for many potential applications over a wide range of laser wavelengths, pulse repetition rates, time structures and power levels, etc. In addition, a new double-pass variable shaping method is also proposed and could significantly simplify the shaper structure and reduce the cost.
*liufangming@pku.edu.cn
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW044  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW084 Corrections of Klystron Output Pulse in SW Accelerator Testing klystron, feedback, linac, ISOL 3772
 
  • M.H. Nasr, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Accelerator testing requires a good control over the shape of the used pulse. Usually, flat or stepped square pulses are used for testing. Producing a perfectly flat output pulse from the klystron can be challenging especially for testing standing wave (SW) accelerators. SW accelerator structures reflect high power back to the klystron and no isolator can withstand the reflected power level for high gradient operation. This results in a distorted output pulse from the Klystron. We developed a modulation technique that solves this problem using a negative feedback loop. This technique can also overcome a poor modulator performance and other system errors. The pulse correction feedback was successfully implemented for high gradient SW accelerator testing at SLAC and KEK.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW084  
About • paper received ※ 24 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW089 Mechanical Design of a Diamond Crystal Hard X-Ray Self-Seeding Monochromator for PAL-XFEL FEL, vacuum, alignment, electron 3782
 
  • D. Shu, J.W.J. Anton, S.P. Kearney, K. Kim, Yu. Shvyd’ko
    ANL, Argonne, Illinois, USA
  • H.-S. Kang, C.-K. Min, B.G. Oh, S.Y. Rah
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357
As a part of the Argonne Strategic Partnership Project (SPP) 85H21, a collaboration between Advanced Photon Source (APS), Argonne National Laboratory (ANL) and Pohang Accelerator Laboratory (PAL), we have designed, constructed, and tested a thin-film-diamond monochromator for the PAL X-ray Free-Electron-Laser (PAL-XFEL) hard x-ray self-seeding project*. The mechanical design of the PAL-XFEL diamond crystal hard x-ray self-seeding monochromator is based on the APS design of a diamond-crystal monochromator for the LCLS hard x-ray self-seeding project** with enhanced diamond crystal holder for two thin-film-diamond crystals with thicknesses of 30 microns and 100 microns***. The customized high quality thin-film-diamonds and special graphite holder were provided by the Technological Institute for Super-hard and Novel Carbon Materials of Russia (TISNCM)****, and tested at the APS***. An in-vacuum multi-axis precision positioning mechanism is designed to manipulate the duo-thin-film diamonds holder with resolutions and stabilities required by the hard x-ray self-seeding physics. Mechanical specifications, designs, and preliminary test results of the diamond monochromator are presented in this paper.
*Chang-Ki Min, et al, sub. J. Sync. Rad., 2018
**D. Shu, et al, J. Phys.: Conf. Ser. 425 (2013) 052004
***Y. Shvyd’ko, et al, FEL2017, Santa Fe
****Polyakov S, et. al, 2011 Diam. Rel. Mat. 20 726
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW089  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW096 CERN Accelerator Operation’s Planning Manager and Dashboard interface, operation, framework, distributed 3792
 
  • E. Matli, T. Hesselberg, J.N. Nielsen
    CERN, Geneva, Switzerland
  • T. Hesselberg
    NTNU, Trondheim, Norway
 
  Running CERN complex of accelerators and infrastructure requires the seamless collaboration of many people, such as operators, experts and people-on-call to name only a few. Distributed in teams from different groups, it is important to centralise schedule planning and operational information and make this information readily available. In BE/OP these tasks are handled by two applications to manage shift work as well as piquet and expert services. At the beginning of 2018, a project was started to replace the ageing web piquet application. While collecting requirements we realised a more flexible application was needed to suit a broader set of customers, and to offer a more generic, people- oriented tool. The new planning tool consists of two separate applications: The Planning Manager, which is used to organise work schedules of a teams members, and to keep each group’s planning up-to-date, coherently, and visible to all involved. The Planning Dashboard, which allows any user to create a customised view of the available services they use.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW096  
About • paper received ※ 02 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB004 Hardware and Firmware Development for Enhanced Orbit Diagnostics at the Australian Synchrotron EPICS, FPGA, diagnostics, feedback 3802
 
  • S. Chen, R.B. Hogan, A. Michalczyk, A. C. Starritt, Y.E. Tan
    AS - ANSTO, Clayton, Australia
 
  The Enhanced Orbit Diagnostic (EOD) features will be an expansion to the existing Fast Orbit Feedback (FOFB) system that is currently in operation. The new system will add the capability of online cor-rector-to-position response matrix calculation; this will significantly reduce the required measurement time. The new features will allow the injection of PRBS noise or sinusoidal signals into correctors, to characterise and monitor the FOFB system’s parameters and performance and track it over time. The system will be built based on a Xilinx ZYNQ Sys-tem-on-Module (SOM) mounted on an in-house designed motherboard to which the existing FOFB daughter board is plugged into.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB004  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB005 Orbit Feedback and Beam Stability at the Australian Synchrotron feedback, FPGA, operation, EPICS 3805
 
  • A. C. Starritt, A. Pozar, Y.E. Tan
    AS - ANSTO, Clayton, Australia
 
  The Australian Synchrotron (AS) is a 3rd generation light source which has been in operation since 2006. Measurement of the storage ring’s beam position is provided by 98 beam position monitors, and corrections can be applied using 42 horizontal and 56 vertical slow corrector magnets, and 42 horizontal and 42 vertical fast corrector magnets. This paper provides a background describing the feedback strategies adopted at the AS leading to the current integrated orbit feedback system, together with a description of the beam position analyse techniques currently in use. It will also highlight some of the issues encountered with the system and how they were overcome. The paper also describes planned improvements, including the enhanced orbit diagnostics functionality we are intending to introduce in the next 12 months.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB005  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB007 Ponderomotive Instability of Self-Excited Cavity cavity, resonance, feedback, SRF 3808
 
  • S.R. Koscielniak
    TRIUMF, Vancouver, Canada
 
  The electro-magnetic fields within a super-conducting radio frequency (SRF) cavity can be sufficiently strong to deform the cavity shape, which may lead to a ponderomotive instability. Stability criteria for the self-excited mode of cavity operation were given in 1978 by Delayen. The treatment was based on the Routh-Hurwitz analysis of the characteristic polynomial. With the Wolfram modern analytical tool, "Mathematica", we revisit the criteria for an SRF cavity equipped with amplitude and phase loops and a single microphonic mechanical mode.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB007  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB008 Ponderomotive Instability of Two Self-Excited Cavities cavity, resonance, linac, coupling 3812
 
  • S.R. Koscielniak
    TRIUMF, Vancouver, Canada
 
  We consider the ponderomotive instability of two superconducting RF cavities self-driven from a single RF source with vector-sum control.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB008  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB009 Vector Sum & Diffference Control of SRF Cavities cavity, resonance, coupling, linac 3816
 
  • S.R. Koscielniak
    TRIUMF, Vancouver, Canada
 
  We consider the ponderomotive instability of multiple superconducting RF cavities driven from a single RF source. We add vector difference control to the usual the technique of vector sum control, in order to increase the accelerating gradient threshold for ponderomotive instability.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB009  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB010 Ponderomotive Instability of Generator-Driven Cavity cavity, resonance, SRF, feedback 3820
 
  • S.R. Koscielniak
    TRIUMF, Vancouver, Canada
 
  The electro-magnetic fields within a super-conducting radio frequency (SRF) cavity can be sufficiently strong to deform the cavity shape, which may lead to a ponderomotive instability. Stability criteria for the generator-driven mode of cavity operation were given in 1971 by Schulze. The treatment side-stepped the Routh-Hurwitz analysis of the characteristic polynomial. With the Wolfram modern analytical tool, ’Mathematica’, we revisit the criteria for an SRF cavity equipped with amplitude and phase loops and a single microphonic mechanical mode.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB010  
About • paper received ※ 14 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB011 Norm-optimal Iterative Learning Control to Cancel Beam Loading Effect on the Accelerating Field beam-loading, cavity, simulation, feedback 3824
 
  • Z. Shahriari, K. Fong
    TRIUMF, Vancouver, Canada
  • G.A. Dumont
    UBC, Vancouver, Canada
 
  Iterative learning control (ILC) is an open loop control strategy that improves the performance of a repetitive system through learning from previous iterations. ILC can be used to compensate for a repetitive disturbance like the beam loading effect in resonators. In this work, we aim to use norm-optimal ILC to cancel beam loading effect. Norm-optimal ILC updates the control signal with the goal of minimizing a performance index, which results in monotonic convergence. Simulation results show that this controller improves beam loading compensation compared to a PI controller.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB011  
About • paper received ※ 14 May 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB012 Toward Autonomous Phasing of ISAC Heavy Ion LINACs cavity, ISAC, linac, cryomodule 3827
 
  • O. Shelbaya, R.A. Baartman, O.K. Kester, S. Kiy
    TRIUMF, Vancouver, Canada
 
  Ongoing development work at TRIUMF aims to implement a model-based tuning approach for accelerators, with the goal of automation of tuning tasks and minimizing tuning times. As a part of this, work is underway toward the development of an analytical model of the linacs using the methodology of Hamiltonian based beam envelope dynamics. The TRIUMF High-Level Applications (HLA) project has been developing software that allows direct interfacing with the control system. The envelope code TRANSOPTR is now being extended to simulate the ISAC-II Superconducting Linac. Within the emerging HLA framework, this will allow for automated phasing and tuning of the linac. The steps of the model development will be presented in this contribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB012  
About • paper received ※ 10 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB018 Large-Scale Optical Synchronization System of the European XFEL with Femtosecond Precision laser, FEL, electron, FEM 3835
 
  • T. Lamb, M.K. Czwalinna, M. Felber, C. Gerth, T. Kozak, J.M. Müller, H. Schlarb, S. Schulz, C. Sydlo, M. Titberidze, F. Zummack
    DESY, Hamburg, Germany
 
  Femtosecond pulsed optical synchronization systems have evolved over the last few years and are now a mature technique to synchronize FELs. A large-scale femtosecond-precision synchronization system with up to 44 end-stations has been constructed at the European XFEL to meet the FEL synchronization stability requirements. The synchronization system is used to phase-lock various laser systems with femtosecond accuracy, to precisely measure the electron bunch arrival time along the accelerator for fast arrival time feedbacks and to locally phase stabilize the phase of the RF reference signals for the accelerator RF controls on a femtosecond level. The architecture of the large-scale synchronization system and design choices made to achieve the reliability, maintainability and performance requirements are presented together with measurement results from the past year of operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB018  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB021 Automatic Loop for Carrier Suppression in Attosecond RF Receivers operation, electron, FPGA, electronics 3847
 
  • U. Mavrič, M. Hoffmann, F. Ludwig, H. Schlarb, L. Springer
    DESY, Hamburg, Germany
 
  The carrier suppression interferometer method can be used as a radio receiver architecture which allows for detection of RF signals in the attosecond range. The carrier suppression scheme requires an automatic carrier suppression circuit which provides stable operation of the RF receiver in the best operating point. In the poster we investigate the requirements for such an algorithm, evaluate the achievable closed loop bandwidth and the side effects on the overall-performance. In addition we apply the carrier tracking to simplify and automate the characterization of various electronic phase shifters and attenuators in the as-range  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB021  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB022 Sensitivity Analysis of Feedforward Beam Current Compensation for Improved Beam Loading Robustness cavity, emittance, injection, simulation 3850
 
  • D. Mihailescu Stoica, D. Domont-Yankulova
    RMR, TU Darmstadt, Darmstadt, Germany
  • D. Domont-Yankulova, H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
  • H. Klingbeil, D.E.M. Lens
    GSI, Darmstadt, Germany
 
  The planned SIS100 heavy ion synchrotron at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany will possess twenty ferrite accelerating cavities in its final stage of extension. During the intended acceleration cycles, the cavities will encounter significant beam loading effects, which have to be handled by the control systems. As both the generator- and beam-current act on the same system input, a feedforward disturbance compensation can be a promising approach to improve beam qualities and suppress instabilities induced by the beam current. Particle tracking simulations, incorporating twenty ferrite cavities and their attached LLRF control systems, are performed to analyse the sensitivity of the beam quality with respect to errors in the feedforward beam current compensation. The main focus lies on the time after injection from a pre-accelerator, where most cavities in the SIS100 do not provide any gap voltage and thus are particularly sensitive to induced voltages by beam currents if the cavities are not or only partly short-circuited.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB022  
About • paper received ※ 10 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB023 An MTCA.4 Based Position Feedback Application Using Laserinterferometers laser, experiment, feedback, interface 3853
 
  • K.P. Przygoda, L. Butkowski, S. Pfeiffer, H. Schlarb, P. Wiljes
    DESY, Hamburg, Germany
 
  To perform experiments on the nanometer scale at high brilliant x-ray light sources, it is highly recommended to have the mechanical components of the experiment, like lenses, mirrors and samples, as stable as possible. Since these components need to move from nanometer up to millimeter range they cannot be stabilized by only using rigid structures. For that reason an active stabilization system with fast and precise sensors needs to be developed. Here a Laserinterferometer is used, which provides picometer resolution at several MHz sample rate. In this paper we will present a laboratory setup which consists of a 6-slot Micro Telecommunication Computing Architecture generation 4 (MTCA.4) crate with standard components such MicroTCA carrier hub (MCH), central processing unit (CPU), power supply (PS) and cooling unit (CU). The Interferometer application has been setup with Deutsches Elektronen-Synchrotron (DESY) advanced mezzanine card (DAMC-FMC20) data processing unit, DESY Field Programmable Gate Array (FPGA) mezzanine card (DFMC-UNIO) universal input and output extension and DESY rear transition module (DRTM-PZT4) piezo driver. The encoder signals given by the interferometer controller are processed within the FPGA and then forwarded to the piezo amplifier RTM-board. The signal processing application includes decoding the digital feedback signal, calculating the coordinate transform for specific experimental setups and closed-loop operation based on a proportional integral derivative (PID) controller. The first results of the laboratory setup are demonstrated and briefly discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB023  
About • paper received ※ 12 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB024 Piezo Controls For The European XFEL cavity, FEL, linac, LLRF 3856
 
  • K.P. Przygoda, J. Branlard, L. Butkowski, M.K. Grecki, M. Hierholzer, M. Omet, H. Schlarb
    DESY, Hamburg, Germany
 
  The European X-Ray Free Electron Laser (E-XFEL) accelerator is a pulse machine. The typical time duration of a radio frequency (RF) pulse is about 1.3 ms. The RF power transmitted to the superconducting RF (SCRF) cavity as a set of successive pulses (10 Hz repetition rate), causes strong mechanical stresses inside the cavity. The mechanical deformations of the RF cavity are typically caused by the Lorentz force detuning (LFD). The cavity can be tuned to a 1.3 GHz resonance frequency during the RF pulse using fast piezo tuners. Since the E-XFEL will use around 800 cavities (each cavity with double piezos), a distributed architecture with multi-channel digital and analog control circuits seems to be essential. The most sought-after issue is high-voltage, high-current piezo driving circuit dedicated to multi-channel configuration. The driving electronics should allow a maximum piezo protection against any kind of failure. The careful automation of the piezo tuners control and its demonstration for the high gradient conditions a real challenge. The first demonstration of piezo controls applied for chosen RF stations of the E-XFEL linear accelerator (linac) are presented and obtained results are briefly discussed within this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB024  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB025 New MicroTCA Piezo Driver (PZT4) cavity, high-voltage, operation, power-supply 3860
 
  • K.P. Przygoda, L. Butkowski, M. Fenner, M. Hierholzer, R. Rybaniec, H. Schlarb, Ch. Schmidt
    DESY, Hamburg, Germany
  • R. Rybaniec
    PSI, Villigen PSI, Switzerland
 
  In the paper we would like to present a new Micro Telecommunication Computing Architecture (MicroTCA) piezo driver (PZT4). The piezo driver module is capable of driving of 4 piezo actuators with high voltages up to 160 Vpp. It is also possible to measure cavity mechanical vibrations using 4 analog to digital converters (ADC) ported to the driver electronics. The new piezo driver can be supplied using internal 12 V payload power provided by the MicroTCA standard. For the applications that need more than 30 W of the input power, the external power supply module can be provided. In order to protect the piezo driver electronics against output short condition a dedicated supervision circuit is designed. The piezo driver module has been setup at Cryo Module Test Bench (CMTB) facility in Deutsches-Elektronen Synchrotron (DESY) as a part of the single cavity low-level radio frequency (LLRF) controls. The LLRF control system has been used to demonstrate the radio frequency (RF) field stabilization and cavity tuning capabilities for continuous (CW) and pulse modes of operation of 1.3 GHz superconducting resonant RF (SCRF) cavity. The preliminary results are demonstrated and briefly discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB025  
About • paper received ※ 08 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB028 Redesign of the JavaFX Charts Library in View of Real-Time Visualisation of Scientific Data interface, real-time, experiment, framework 3868
 
  • R.J. Steinhagen, H. Bräuning, A. Krimm, T. Milosic
    GSI, Darmstadt, Germany
 
  The accurate graphical representation of accelerator- or beam-based parameters is crucial for commissioning and operation in any modern accelerator. Charts are one of the most visible but at the same time often underappreciated accelerator control system components even though these are crucial for easing and improving a quick intuitive understanding of complex or large quantities of data, which in turn is used to efficiently control, troubleshoot or improve the accelerator performance. While the Java SDK and other third-party libraries provide some charting components, we found that these lack either functionality, performance, or are based on outdated complex APIs. Based on earlier GSI and CERN designs and careful analysis of missing functionalities, performance bottlenecks, and long-term maintenance risks for the necessary workarounds, we decided that it was worth to re-engineer a new scientific charting library that preserves the functionality of established other libraries while addressing the performance bottlenecks and APIs issues. The new library offers a wide variety of plot types common in the scientific community, a flexible plugin system to extend the functionality towards chart interactors as well as online parameter measurements commonly found in oscilloscopes. Tailored towards high performance, it achieves real-time update rates up to 25 Hz for data sets with a few 10k up to 5 million data points. The new API shields the complexity from and eases the library’s use by normal users, while still being modular and having explicitly open interfaces that allow more-inclined developers to modify, add or extend missing functionalities. This contribution provides a performance and functionality comparison with other existing Java-based charting libraries.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB028  
About • paper received ※ 15 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB030 Novel FPGA-based Instrumentation for Personnel Safety Systems in Particle Accelerator Facility FPGA, radiation, monitoring, operation 3872
 
  • S. Pioli, M. Belli, M.M. Beretta, B. Buonomo, P. Ciambrone, D.G.C. Di Giulio, O. Frasciello, A. Variola
    INFN/LNF, Frascati, Italy
  • P. Valente
    INFN-Roma, Roma, Italy
 
  Personnel safety system for particle accelerator facility involves different devices to monitor gates, shielding doors, dosimetry stations, search and emergency buttons. In order to achieve the proper reliability, fail-safe and fail-proof capabilities, these systems are developed compliant with safety standards (like the IEC-61508 on ’Functional Safety’, ANSI N43.1 ’Radiation Safety for the design and operation of Particle Accelerator’ and NCRP report 88) involving stable technologies like electro-mechnaical relays and, recently, PLC. As part of the Singularity project at Frascati National Laboratories of INFN, this work will report benchmark of a new FPGA-based system from the design to the validation phase of the prototype currently operating as personnel safety system at the Beam Test Facility (BTF) of Dafne facility. This novel instrument is capable of: devices monitoring in real-time at 1 kHz, dual modular redundancy, fail-safe and fail-proof, multi-node distributed solution on optical link, radiation damage resistance and compliant with IEC-61508, ANSI N43.1 and NCRP report 88. The aim of this FPGA-based system is to illustrate the feasibility of FPGA technology in the field of personnel safety for particle accelerator in order to take advantage of a fully digital system integrated with facility control system, evaluate the related reliability and availability and realize a standard, scalable and flexible hardware solution also for other fields with similar requirements like machine protection systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB030  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB033 Development Status of RF Reference Phase Stabilization System for SuperKEKB Injector LINAC linac, feedback, photon, distributed 3879
 
  • N. Liu, B. Du
    Sokendai - Hayama, Hayama, Japan
  • D.A. Arakawa, H. Katagiri, T. Kobayashi, T. Matsumoto, S. Michizono, T. Miura, F. Qiu, Y. Yano
    KEK, Ibaraki, Japan
  • T. Matsumoto, T. Miura, F. Qiu
    Sokendai, Ibaraki, Japan
 
  SuperKEKB injector linear accelerator (LINAC) has 600 m beam lines which consist of 8 sectors. The 2856 MHz RF reference signals are distributed to each sector with long phase stabilized optical fiber (PSOF). The RF reference phase stability requirement is estimated to be 0.2°(RMS) corresponding to 200 fs. The prototype of RF reference phase stabilization system with single mode optical circulator was implemented and demonstrated in the laboratory. The returned phase drift is compensated by a piezo-driven fiber stretcher. The transmitted phase through 120 m PSOF is stabilized to 41 fs (pk-pk), which fulfilled the requirement. This paper introduces the RF reference phase stabilization system and reports the preliminary feedback result.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB033  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB037 Improved Frequency Characteristics Using Multiple Stripline Kickers kicker, feedback, pick-up, extraction 3893
 
  • T. Toyama, A. Kobayashi, H. Kuboki, M. Okada
    KEK, Tokai, Ibaraki, Japan
 
  One of the important ingredient in the intra-bunch transverse feedback is a kicker. The frequency characteristics of the kicker suffers from the transit-time factor, sin(kl)/kl. We examine the frequency characteristics of multiple kickers system. Relation between the excitation patterns of the multiple kickers and the frequency characteristics are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB037  
About • paper received ※ 23 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB038 ALARM SYSTEM OF IRFEL AT NSRL FEL, GUI, interface, EPICS 3896
 
  • X. Chen, C. Li, G. Liu, Z.X. Shao, Y. Song, J.G. Wang, K. Xuan
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  An InfraRed Free Electron Laser Light (IRFEL) is under commissioning at National Synchrotron Radiation Laboratory (NSRL). The control system of IRFEL is a distributed system based on Experimental Physics and Industrial Control System (EPICS). The alarm system is an essential part of the control system. It is developed based on the software Phoebus. The module named "Alarms" in Phoebus can store states and configuration information of the Process Variable (PV) in the Kafka topics. To meet our requirements, 3 kinds of alarm message distribution applications are developed, i.e. Web-Based GUI, WeChat and SMS. This paper will introduce the alarm system architecture and the implementations of the applications for alarm message distribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB038  
About • paper received ※ 17 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB041 Design a Precise Stability Controller for High Power Pulse Modulator Based on FPGA FEL, FPGA, linac, experiment 3900
 
  • Y.F. Liu, Z.H. Chen, M. Gu, J. Tong, Y. Wu, Q. Yuan, X.X. Zhou
    SINAP, Shanghai, People’s Republic of China
 
  Shanghai Soft X-ray Free Electron Laser (SXFEL) facility is under testing at Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences. The stability of RF system is one of the major factors to get great beam performance. It is mainly determined by klystron modulators power supply. The beam voltage of the LINAC klystron modulator, which is the pulsed power source of the RF amplifier, is directly affecting the RF amplitude and phase. This paper shows the suitable upgrade scheme of the modulator power supply and design considerations for the stability improvement of modulator power supply for Shanghai SXFEL. We present a real time feedback control system of LINAC pulse modulator to improve pulse to pulse amplitude stability. The feedback control system is based on the principle of embedded FPGA techniques. The control system consists of an embedded NIOS II processor, a High resolution ADC and an upper computer. The NIOS II processor manage on chip FIFO, ADC, IRQ, and Ethernet. The relevant experiments indicate that the feedback control strategy reaches required function. It is useful to improve the stability of existing modulator power supply.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB041  
About • paper received ※ 21 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB042 Stability Research Progress on High-power Pulse Modulator for SXFEL-UF feedback, FEL, FPGA, network 3904
 
  • Q. Yuan, M. Gu, Y.F. Liu, J. Tong, Y. Wu
    SINAP, Shanghai, People’s Republic of China
 
  Funding: Supported by the National Natural Science Foundation of China(11675250)
Abstract: SXFEL-UF(Shanghai Soft X-ray Free Electron Laser User Facility) under construction presently demands higher energy stability. Stability of pulse modulator feeding power for klystron plays an utmost important role in energy stability and occupy dominant factors in bringing influences in stability of RF power. Presently, stability of high-power pulse modulator of LINAC (Linear Accelerator) is on the level of 0.1% to 0.05% usually. In order to meet the higher stability requirements, it is very necessary for close-loop feedback control techniques instead of traditional open-loop to be applied in the modulator design. The stability controller adopts double control-loops techniques which feedback signals are respectively from PFN(Pulse Forming Network) and pulse transformer in oil tank. In addition, the paper also introduces recent progress on high stability CCPS research(Capacitor Charging Power Supply), which brings direct impact on the stability of modulator. In comparison with the former close-loop design, high stability CCPS design takes the overall modulator stability into full consideration. And the feedback control algorithm utilized to adjust PWMs for full bridge switch is implemented in the CCPS controller directly rather than modulator controller independent of CCPS. It is expected to obtain 0.01% stability by taking the above measures.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB042  
About • paper received ※ 06 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB044 LLRF Control System for RF GUN at SXFEL Test Facility gun, LLRF, FEL, FPGA 3912
 
  • L. Li, Q. Gu, Y.J. Liu, C.C. Xiao, J.Q. Zhang
    SINAP, Shanghai, People’s Republic of China
  • Y.F. Liu, Z. Wang
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  A Soft X-ray Free Electron Laser Test Facility (SXFEL-TF) based on normal conducting linear accelerator was constructed at the Shanghai Synchrotron Radiation Facility (SSRF) campus by a joint team of Shanghai Institute of Applied Physics and Tsinghua University. It consists of multiple Radio Frequency (RF) stations with standing wave cavity (RF Gun) and traveling wave accelerating structures working at different frequencies. Low Level Radio Frequency (LLRF) system is used to measure the RF field in the cavities or structures and correct the fluctuation in RF fields with pulse-to-pulse feedback controllers. This paper describes the hardware and architecture of the LLRF system for electromagnetic filed stabilization inside the radio frequency electron gun, in the SXFEL-TF. A complete control path has be presented, including RF front-end board, I/Q detector and feedback controller. Algorithms used to stabilize the RF field have been presented as well as the software environment used to provide remote access to the control device. Finally, the performance of the LLRF system that was realized in the beam commissioning is presented and meets the high accuracy requirements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB044  
About • paper received ※ 23 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB045 A Novel Microwave Switch-Based LLRF System for Long-Term System Phase Drift Calibration LLRF, coupling, ISOL, experiment 3915
 
  • Z.Y. Lin, Y.-C. Du, W.-H. Huang, C.-X. Tang, J. Tang
    TUB, Beijing, People’s Republic of China
  • G. Huang, Y.L. Xu
    LBNL, Berkeley, California, USA
  • Z. Sun, D. Zhang
    HZCY Technologies Co., Ltd., Beijing, People’s Republic of China
 
  The long-term phase drift is one of the important issue for the stability of the Low level RF system. The signal crosstalk and temperature effect on the RF field detectors will significantly limited the performance of the phase detecting precise and the phase locking. A novel micro-wave switch-based LLRF system has been developed in Tsinghua accelerator lab. The microwave switch are ap-plied to in the chopper circuit to turn continuous signal into pulse signal in the time domain to avoid the mutual signal interference. In this paper the LLRF system based on microwave switch is present. The preliminary long-term experiments result shows the phase stability can achieve about 50fs RMS slow drift; and the peak-to-peak value of the slow drift was (~2°C p-p) over 4 days.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB045  
About • paper received ※ 22 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB046 The Preliminary Long-Term Slow Drift Calibration Study in Low-Level Rf System LLRF, experiment, monitoring, timing 3918
 
  • Z.Y. Lin, Y.-C. Du, W.-H. Huang, C.-X. Tang, J. Tang
    TUB, Beijing, People’s Republic of China
  • G. Huang, Y.L. Xu
    LBNL, Berkeley, California, USA
  • Z. Sun, D. Zhang
    HZCY Technologies Co., Ltd., Beijing, People’s Republic of China
 
  The phase drift of the RF signal in the low-level radio frequency (LLRF) system is observed in the long-term operation, which limits the performance and stability of the LLRF system. The long-term drift was reproduced in the lab. Its effect and sources of error were explored in the simple LLRF46 board and the simplest LLRF system. It is founded that the temperature will significantly lead to the phase distortion of the two signal channels, although with the same electron device. The distortion will finally cause the long-term drift with temperature floating. A fixed phase calibration signal (CAL signal) is applied to deal with the signal channels difference. The preliminary tests were conducted and the results were analysed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB046  
About • paper received ※ 22 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB050 LLRF System Modelling and Controller Design in UED LLRF, electron, cavity, cathode 3924
 
  • Y.Q. Li, K. Fan, Y. Song
    HUST, Wuhan, People’s Republic of China
 
  In the Ultrafast Electron Diffraction (UED) facility for investigating material structure, drifts of amplitude and phase in cavity have different effects on beam quality. So it is critical for pump-probe experiments in the UED to keep accurate synchronization between the laser and electron. To achieve the desired 50fs resolution, the Low Level Radio Frequency (LLRF) controller in S-band normal conducting cavity needs to satisfy the stability: ±0.01% (rms) for the amplitude and ±0.01° (rms) for the phase, respectively. Then we can study the performance of the RF control system by simulating the LLRF system. In the simulation program, feedback, feed-forward algorithms, and beam current variations can be simulated in a Matlab/Simulink environment. This paper shows that a model-based controller design can meet the necessary requirements of the field regulation and implement the algorithms.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB050  
About • paper received ※ 20 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB055 DAMAGE BEHAVIOR OF TUNGSTEN TARGETS FOR 6 MEV LINEAR ACCELERATORS target, experiment, electron, ECR 3934
 
  • Z.H. Wang, Z.N. Liu, J. Shi, H. Zha
    TUB, Beijing, People’s Republic of China
 
  The target in electron linear accelerator is subjected to high-frequency and intense thermal shocks. Elevated temperatures in the target may lead to target recrystallization, fatigue cracking, creep and vaporization. In this study, experiments were carried out to investigate the damage behaviour of tungsten targets in 6 MeV linear accelerators under pulsed electron beam. The results show that recrystallization occurs after loading 6 MeV electron beam with repetition frequency of 220 Hz, pulse width of 4μs and mean current of 151μA for 248 s. Deformation and cracking caused by recrystallization are observed on the surface of the target.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB055  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB062 New Orbit Correction Method Based on SVDC Algorithm for Ring Based Light Sources feedback, lattice, simulation, photon 3943
 
  • X.Y. Huang, J.S. Cao, Y.Y. Du, Y.H. Lu, H.Z. Ma, Y.F. Ma, Y.F. Sui, S.J. Wei, Y. Wei, Q. Ye, X.E. Zhang, D.C. Zhu
    IHEP, Beijing, People’s Republic of China
 
  Funding: Union Foundation of excellent post-doctoral of China
Orbit feedback system is essential for realizing the exceeding beam stability in modern ring based light sources. Most advanced light sources adopt the global correction scheme by using singular value decomposition (SVD) algorithm. In this paper, a new SVD with constraints method (SVDC) is proposed to correct the global and local orbit simultaneously. Numerical simulations are presented with the case of High Energy Light Source (HEPS) by comparing classic algorithms. The results show that SVDC is very effective for orbit correction and very easy to implement.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB062  
About • paper received ※ 09 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB063 Field Control Challenges for Different LINAC Types cavity, linac, FEL, electron 3946
 
  • O. Troeng, A.J. Johansson
    Lund University, Lund, Sweden
  • M. Eshraqi
    ESS, Lund, Sweden
  • S. Pfeiffer
    DESY, Hamburg, Germany
 
  Linacs for free-electron lasers typically require cavity field stabilities of 0.01\% and 0.01 degree, while the requirements for high-intensity proton linacs are on the order of 0.1–1\% and 0.1–1 degrees. From these numbers it is easy to believe that the field control problem for proton linacs is many times easier than for free-electron lasers linacs. In this contribution we explain why this is not necessarily the case, and discuss the factors that make field control challenging. We also discuss the drivers for field stability, and how high-level decisions on the linac design affect the difficulty of the field control problem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB063  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB068 Upgrade of CERN’s PSB Digital Low-Level RF System HLRF, LLRF, operation, proton 3958
 
  • M.E. Angoletta, S.C.P. Albright, A. Findlay, M. Jaussi, J.C. Molendijk, N. Pittet
    CERN, Geneva, Switzerland
 
  The CERN PS Booster (PSB) is the first circular accelerator in the LHC proton injector chain. The upgrade of this four-ring machine is underway within the framework of the LHC Injectors Upgrade project. The existing digital Low-Level RF (LLRF) system will also be upgraded. This paper outlines the LLRF capabilities required, their implementation and the challenges involved. Results of tests carried out to prepare for the LLRF upgrade are given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB068  
About • paper received ※ 13 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB077 Optics Corrections Using Machine Learning in the LHC optics, network, quadrupole, simulation 3990
 
  • E. Fol, J.M. Coello de Portugal, R. Tomás
    CERN, Meyrin, Switzerland
  • G. Franchetti
    GSI, Darmstadt, Germany
 
  Optics corrections in the LHC are based on a response matrix approach between available correctors and observables. Supervised learning has been applied to quadrupole error prediction at the LHC giving promising results in simulations and surpassing the performance of the traditional approach. A comparison of different algorithms is given and it is followed by the presentation of further possible concepts to obtain optics corrections using machine learning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB077  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB082 The CERN SPS Low Level RF upgrade Project cavity, LLRF, feedback, acceleration 4005
 
  • G. Hagmann, P. Baudrenghien, J.D. Betz, J. Egli, G. Kotzian, M. Rizzi, L. Schmid, A. Spierer, T. Włostowski
    CERN, Meyrin, Switzerland
  • F.J. Galindo Guarch
    Universitat Politécnica de Catalunya, Barcelona, Spain
 
  The High Luminosity LHC project (HL-LHC) calls for the doubling of the beam intensity injected from the Super Proton Synchrotron (SPS). This is not possible with the present RF system consisting of four 200 MHz cavities. An upgrade was therefore launched, consisting of the installation of two more cavities during the machine shutdown in 2019-2020 (LS2). Installation of more cavities requires the installation of extra Low Level RF (LLRF) electronics. The present LLRF system consists of the original equipment installed in the 1970s, plus some additions dating from the late 1990s when the SPS was commissioned as LHC injector. The High-Power RF up-grade has motivated a complete renovation of the LLRF during LS2; use of a MicroTCA platform, use of a digital deterministic link for synchronization (the so-called White Rabbit), use of an absolute clock for the processing, new algorithms for reducing the cavity impedance, and a complete re-design of the beam control loops and slip-stacking.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB082  
About • paper received ※ 13 May 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB088 Optimizing The Reliability of The Fire Alarm System in The Taiwan Photon Source detector, radiation, shielding, storage-ring 4026
 
  • W.S. Chan, F.-D. Chang, C.S. Chen, Y.F. Chiu, J.C. Liu, Z.-D. Tsai
    NSRRC, Hsinchu, Taiwan
 
  The fire alarm system plays a critical role for the safety of building occupants. However, in the past two years from 2016 to 2017, occasionally false alarms at the Taiwan Photon Source (TPS) occurred. Results of more detailed observations indicated that radiation and/or electromagnetic interference (EMI) of the TPS accelerator disturb smoke detectors and signal line circuits (SLCs). Lead shielding covers, adjusting of the detector alarm verification time and a laser-based aspi-rating smoke detector were used to reduce the probabil-ity that fire alarms become activated to less than 0.5 times per year.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB088  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB090 Laboratory Exhaust Gas Treatment Systems at TPS synchrotron, status, photon, experiment 4029
 
  • J.-C. Chang, W.S. Chan, Z.-D. Tsai
    NSRRC, Hsinchu, Taiwan
 
  There are three main laboratory exhaust gas treatment systems equipped at Taiwan Photon Source (TPS): acid/alkaline system for corrosive acids and alkalis, volatile solvents, and other hazardous chemicals; organic system for biological experiments; and general system for other gas. Gas is collected in hoods installed near the sources of contamination in laboratories. The contamination then is transported through duct to the gas treatment equipment installed outside of the TPS experimental hall.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB090  
About • paper received ※ 06 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB094 Study of the System Stability for the Digital Low Level RF System Operated at High Beam Currents cavity, LLRF, feedback, simulation 4042
 
  • Z.K. Liu, F.Y. Chang, L.-H. Chang, M.H. Chang, S.W. Chang, L.J. Chen, F.-T. Chung, Y.T. Li, M.-C. Lin, C.H. Lo, Ch. Wang, M.-S. Yeh, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  The purpose of a Low-Level Radio Frequency (LLRF) system is to control the amplitude and phase of the field in the accelerating cavity. A digital LLRF (DLLRF) system will be installed in the Taiwan Photon Source (TPS) storage ring in 2019. The system stability depends much on the feedback parameters. An instability of the cavity voltage controlled by a DLLRF was observed during machine tests with high beam current and low feedback gain. A simulation model for the digital LLRF system with beam-cavity interaction was developed to investigate this instability and simulations and machine test results will be presented here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB094  
About • paper received ※ 07 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB097 Analysis of RF System Stability on CLARA klystron, gun, linac, cavity 4053
 
  • N.Y. Joshi, J.K. Jones, A.J. Moss, E.W. Snedden, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.C. Dexter, J. Henderson
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • J.K. Jones
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The Compact Linear Accelerator for Research and Applications (CLARA) facility at STFC Daresbury Laboratory will test underpinning concepts and technology for a next generation X-ray free electron laser (FEL). CLARA will use four S-band normal conducting traveling wave linacs to accelerate electron bunches to a maximum energy of 250 MeV. The amplitude and phase stability of the collected RF systems is critical in enabling CLARA to achieve low (10 fs) shot-to-shot timing jitter of the photon output. Here we present initial measurements and model of the amplitude and phase jitter of the CLARA RF systems, achieved by experimentally correlating the klystron output with controls from modulator, driver, and other environment parameters. The effect of the RF jitter on the CLARA beam momentum is also integrated in the model.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB097  
About • paper received ※ 10 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB098 FETS Personnel & Machine Interlock Systems timing, ion-source, status, radiation 4057
 
  • J.H. Macgregor
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The Front End Test Stand (FETS) [1] is a high energy pulsed proton driver that aims to produce a perfectly chopped 50 Hz, 60 mA, 2 ms H’ beam. FETS consists of a Penning Ion source, Low Energy Beam Transport (LEBT), 4 m long bolted construction 324 MHz four vane Radio Frequency Quadrupole (RFQ). The H’ Beam will be perfectly chopped so that bunches of particles can be trapped and accelerated with very low loss into a circular accelerator. To protect personnel from X-ray radiation along with prompt neutrons & gamma radiation, a concrete block-house has been built around the facility and a personnel interlock and search system developed. This paper discusses the mechanical and electrical systems used to ensure personnel safety via the Personnel Protection System (PPS) and machine safety by use of a Programmable Logic Controller, (PLC), used as the Machine Interlock Systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB098  
About • paper received ※ 09 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB100 A Generic Software Platform for Rapid Prototyping of Online Control Algorithms simulation, software, interface, EPICS 4063
 
  • C.J.R. Duncan, M.B. Andorf, I.V. Bazarov, I.V. Bazarov, C.M. Gulliford, V. Khachatryan, J.M. Maxson, D. L. Rubin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • I.V. Bazarov
    Cornell University, Ithaca, New York, USA
 
  Funding: US Department of Energy DE-SC 0013571
Algorithmic control of accelerators is an active area of research that promises significant improvements in machine performance. To facilitate rapid algorithm prototyping, we have developed a generic interface between accelerator controls, beam physics modelling software and modern scripting languages. The work-flow of a project using this interface begins with testing algorithms of choice offline in simulation. After off-line testing, the same code can be deployed on real machines via the Experimental Physics and Industrial Control System (EPICS) API. We include noise in our simulations in order to mimic realistic accelerator behaviour and to evaluate robustness of algorithms to experimental uncertainties and long-term drifts. The results of test cases of using this framework are presented, including emittance tuning of the Cornell Electron Storage Ring (CESR), correction of diurnal drift in CESR steering and orbit correction on CESR and the Cornell-BNL ERL Test Accelerator (CBETA).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB100  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB104 Improvements in Long-Term Orbit Stability at NSLS-II feedback, operation, photon, storage-ring 4070
 
  • Y. Hidaka, A. Caracappa, Y. Hu, B. Podobedov, R.M. Smith, Y. Tian, G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: The study is supported by U.S. DOE under Contract No. DE-SC0012704.
We report our latest efforts to further improve long-term orbit stability at NSLS-II, on top of what is already provided by fast orbit feedback (FOFB) system. A DC local bump generation program, only utilizing RF beam position monitors (BPM) and compatible with FOFB, was first implemented and deployed in operation successfully, allowing on-demand fine adjustments of beamline source positions and angles. Then we introduced a simple feedback version that performs these bump corrections automatically as needed to maintain the sources within in 1 um/urad for select beamlines. In addition, an RF frequency feedback was also implemented to improve stability for 3-pole wigglers and bending magnet users. As a parallel effort, X-ray BPMs were included in a local feedback system to stabilize photon beam motion for several ID beamlines. However, this feedback scheme is not transparent to FOFB, and suspected to be the source of occasional saturation of fast corrector strength. As an alternative solution, the local bump program and its feedback version has been recently upgraded to include bumps with X-ray BPMs and in operation since April 2019.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB104  
About • paper received ※ 19 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB105 ESS Klystron Production Test Stand klystron, high-voltage, power-supply, cathode 4074
 
  • I. Roth, M.P.J. Gaudreau, M.K. Kempkes, N. Silverman, R.E. Simpson
    Diversified Technologies, Inc., Bedford, Massachusetts, USA
 
  Diversified Technologies, Inc. (DTI) has delivered a new long-pulse modulator klystron test stand to Communication and Power Industries (CPI) in Palo Alto, CA for full power testing of production VKP-8292A klystrons for the European Spallation Source (ESS). This test stand was built using hardware and designs from an earlier SBIR effort for the US Department of Energy, with modifications to support ESS requirements and klystron testing operation. Earlier versions of this design are in use at IPN Orsay and CEA Saclay in France to test RF components for ESS. This new klystron test stand allows testing of klystrons at the full ESS specifications: 100 kV, 50 A, 3.5 ms pulse, 14 Hz,. This design is based on a (patent pending) non-dissipative regulator that compensates for the capacitor droop voltage (~20%) during the pulse. This allows a much smaller capacitor than would nominally be required for the long ESS pulse, eliminating the need for larger, more expensive capacitor bank. This test stand will speed delivery of ESS klystrons, and similar, long pulse, high power klystrons at CPI.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB105  
About • paper received ※ 19 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB107 A Novel Design of a Laser Phase Monitor for AWA RF Photocathode Electron Gun laser, LLRF, electron, feedback 4076
 
  • W. Liu, M.E. Conde, D.S. Doran, G. Ha, J.G. Power, J.H. Shao, C. Whiteford, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
 
  It is critical to maintain a stable laser phase for RF photocathode electron gun to achieve high beam stability. In order to achieve a higher beam stability for AWA(Argonne Wakefield Accelerator) beamline, a novel laser phase monitor has been designed to allow us to monitor and feedback on. Both the design and its applications at AWA are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB107  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB115 MicroTCA Based LLRF Control Systems for TARLA and NICA LLRF, cavity, operation, electron 4089
 
  • P. Nonn, C. Gümüş, C. K. Kampmeyer, H. Schlarb, Ch. Schmidt, T. Walter
    DESY, Hamburg, Germany
 
  The MicroTCA Technology Lab (A Helmholtz Innovation Lab) is preparing two turn-key Low Level RF control systems for facilities outside of DESY. The Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) is a 40 MeV electron accelerator with continuous wave (CW) RF operation. The MicroTCA based LLRF control system is responsible for two normal conducting and four superconducting cavities, controlling the RF as well as cavity tuning via motors and piezos. The Light Ion Linac (LILAC) is one of the injectors for the Nuclotron-based Ion Collider Facility (NICA) in Dubna, Russia. It will provide a 7 MeV/u pulsed, polarized proton or deuteron beam. The MicroTCA based LLRF control system will control five normal conducting cavities, consisting of one RFQ, one buncher, one debuncher and two IH-cavities. MicroTCA Technology Lab is cooperating with BEVATECH GmbH, Frankfurt, Germany, who designed the cavities. This paper gives a brief overview of the design of both LLRF systems as well as the status of their assembly.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB115  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS004 The Sirius Heating System for the In-situ NEG Activation vacuum, power-supply, storage-ring, software 4109
 
  • P.H. Nallin, M. Bacchetti, F.G.R. Carrera, D.R. Cavalcante, R.O. Ferraz, P.P.S. Freitas, G.R. Gomes, J.G. Hidalgo, R.T. Neuenschwander, F.A.M. Pinto, A.R.D. Rodrigues, R.M. Seraphim
    LNLS, Campinas, Brazil
 
  Sirius is a 3 GeV fourth-generation synchrotron light source under commissioning in Brazil, with 518 m circumference and a bare lattice emittance of 0.25 nm.rad. This ultra-low emittance machine is based on approximately 700 magnets with 28 mm typical gap. The standard vacuum chamber, that makes up around 80% of the circumference, is a 26 mm external diameter copper tube. Due to the small conductance of the chambers and the limited space between the magnets, the vacuum pumping will be based on distributed concept and then non­-evaporable getter (NEG) coating will be extensively used. To activate the NEG coating, the chambers must be heated at 200°C for about 24 hours. The solution for Sirius was the development of an ultra-thin heating tape, 0.4 mm thick, which allows an in-situ bake-out. The developed tapes are able to operate continuously at 220°C and have in their design a thermal shield that reduces the radiation heat loss to the magnets. This paper describes the development of the heating tape, its power supply, the control software and the operation of the system during the NEG activation at Sirius.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS004  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS006 Upgrade of the Canadian Light Source Booster RF System to Solid State booster, operation, klystron, cavity 4112
 
  • J.M. Patel, D. Bertwistle, J. Stampe
    CLS, Saskatoon, Saskatchewan, Canada
  • A. Bachtior, A. Borisov, N. Pupeter
    CRE, Wuppertal, Germany
  • P. Hartmann
    DELTA, Dortmund, Germany
 
  Funding: CFI, NSERC, NRC, CIHR, the Province of Saskatchewan, WD, and the University of Saskatchewan
The Canadian Light Source synchrotron (CLS) had first light in 2004. For the last 14 years of operation we have exclusively used klystrons to provide RF power to our linac, booster, and storage ring. The klystrons represent a single point of failure for the operation of our booster and storage ring. This is especially poignant in the case of our booster ring klystron which is no longer manufactured. We have chosen to move to solid state amplifier (SSA) RF technology for its implicit high redundancy, modularity, ease of maintenance, and efficiency. Herein we review the performance parameters of our upgraded booster RF to a 100 kW 500 MHz transmitter built by Cryoelectra.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS006  
About • paper received ※ 08 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS014 Visual Inspection of Curved Particle Accelerator Beam Pipes with a Modular Robot dipole, experiment, vacuum, simulation 4135
 
  • N. Schweizer
    RMR, TU Darmstadt, Darmstadt, Germany
  • I. Pongrac
    GSI, Darmstadt, Germany
 
  Inspecting ultra-high vacuum pipe systems of particle accelerators without disassembling the beam pipes is a complex challenge. In particular, curved sections of particle accelerators require a unique approach for the examination of the interior. For the planned heavy ion synchrotron SIS100 at FAIR, an inspection robot is currently under development, featuring an optical imaging system with which the robot can be navigated through the beam pipe. We present the current prototype, which is based on a modular snake-like robot with active wheels and joints. Due to the stipulated low movement velocity, it can be shown that a kinematic model is sufficient to control the robot whereas dynamical effects can be neglected. This concept is proven in experiments with the prototype. At the current development status, the robot is controlled manually by setting the velocity of the first module and its desired turning angle. In simulations we include a CAD model of a dipole chamber of the SIS100 and let an operator successfully navigate the robot through the beam pipe while only observing the camera image.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS014  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS022 The Realization of Iterative Learning Control for J-PARC LINAC LLRF Control System linac, experiment, LLRF, DTL 4155
 
  • S. Li
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Z. Fang, Y. Fukui, K. Futatsukawa, F. Qiu
    KEK, Ibaraki, Japan
  • Y. Sato, S. Shinozaki
    JAEA/J-PARC, Tokai-mura, Japan
 
  The beam current of j-parc linac was planned to increase to 60 mA. The stronger beam current will lead to higher beam loading effect. Due to the low Q factor of cavity in high β section of linac, the traditional PID feedback & feedforward control method may have to face huge challenges. In order to make the system run better at 60 mA, the iterative learning control (ILC) method was put forward to use in LLRF control system. All the ILC operations are done in EPICS-PC. By installing the PyEpics module, we can use python programs to realize the data interaction between EPICS system and PC and further realize the ILC algorithm. In this paper, the architecture of ILC methods will be introduced. The performance of ILC method will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS022  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS026 Effect of Nitric Hydrofluoric Acid Treatment on Brazing of Alumina Ceramics and Pure Titanium vacuum, electron, experiment, gun 4161
 
  • M. Kinsho, J. Kamiya
    JAEA/J-PARC, Tokai-mura, Japan
  • K. Abe
    Hitachi Power Semiconductor Device, Ltd., Hitachishi, Ibaraki, Japan
  • T. Nakamura
    Asahi Kinzoku Co., Ltd., Gifu, Japan
 
  Alumina ceramics vacuum chamber which is used for the 3GeV rapid-cycling synchrotron (RCS) in J-PARC is composed of alumina duct, titanium (Ti) flanges and Ti sleeves. Before brazing the alumina duct and the Ti sleeves, the Ti sleeves were treated with nitric hydrofluoric acid. The purpose of this study is to clear the effect of this treatment for titanium material. It was cleared by SEM observation that the roughness of the titanium material after the nitric hydrofluoric acid treatment becomes big. It was also measured that the thickness of oxide film on surface of the titanium material was 12.7 nm before treatment and 6.0 nm after treatment. As a result of measuring the wettability of the brazing material which was silver brazing filler metal (Ag: 72%, Cu: 28%) on the Ti surface and the diffusion of the Ti material into the brazing material, it became clear that both the clearing of oxide layer on the alumina ceramics and the vacuum condition of the vacuum heating furnace were important for brazing between alumina ceramics and pure titanium.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS026  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS030 HEPS-TF Superconducting Wiggler Control System EPICS, power-supply, wiggler, interface 4174
 
  • J.C. Wang, C.P. Chu, Y. Gao, Q. Le, J. Liu, R. Ye, M.C. Zhan
    IHEP, Beijing, People’s Republic of China
 
  Funding: HEPS-TF
Superconducting Wiggler (SCW) is an important development direction of insertion devices for modern light sources. It is also the key technology of High Energy Photon Source Test Facility (HEPS-TF) insertion device system research. SCW control system involves power supply, cryogenics,vacuum and other devices, control. Serial port server was built for the SCW control system, with EPICS DB to make the PID algorithm for heater and superconductor cavity pressure, temperature, and with Ziegler-Nichols method to quickly find appropriate PID parameters.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS030  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS054 A Novel Approach to Triggering and Beam Synchronous Data Acquisition FPGA, interface, EPICS, data-acquisition 4224
 
  • T. Šuštar
    Cosylab, Villigen, Switzerland
  • P. Bucher, G. Theidel
    PSI, Villigen PSI, Switzerland
  • R. Modic
    Cosy lab, Ljubljana, Slovenia
 
  SwissFEL, the new Free-Electron Laser facility is a 740 m long accelerator with the goal of providing pulses of light between 6 and 30 fs long at a wavelength of 1 to 7 Å at 100 Hz*. To support shot-to-shot photon diagnostic* and link the measurements to other measurements along the machine that belong to the same machine pulse, a new triggering and data acquisition system was developed. A new protocol was introduced which allows deterministic triggering, configuration and data transfer via one full-duplex optical connection. The measurement data is stamped with an unique pulse identifier, delivered from the SwisFEL Timing System**. A readout and control interface was developed to support data delivery to the Data Acquisition Dispatching Layer* and for controlling the system.
* Milne, et al., SwissFEL: The Swiss X-Ray Free-Electron Laser, Appl. Sci. 2017, 7(7), 720
** Kalantari, Biffiger, SwissFEL Timing System: First Opreational Experience, ICALEPC2017
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS054  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS055 Design and Construction of 3D Helmholtz Coil System to Calibrate 3D Hall Probes HOM, alignment, simulation, dipole 4228
 
  • J. Marcos, J. Campmany, A. Fontanet, V. Massana, L.R.M. Ribó
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  In this paper we present the design of a system of 3D Helmholtz coils aimed to generate a magnetic field in any direction in a controlled way. The system is intended to be applied to the detailed characterisation of the response of 3D Hall probes as a function of the orientation of the measured field. The system will generate magnetic fields of up to 5 mT with an expected angular precision of 0.2 mrad.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS055  
About • paper received ※ 26 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS057 New Small Diameter Rotating Coil Shaft for Characterizing New Generation of Multipolar Magnets alignment, quadrupole, data-acquisition, storage-ring 4234
 
  • J. Marcos, J. Campmany, V. Massana, R. Petrocelli, L.R.M. Ribó
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The proliferation of ultimate-light source facilities around the world has yielded the need of accurate characterization of small gap magnets. This also applies to multipolar magnets. Clearance diameters down to 10 mm for quadrupoless and sextupoles become to be used and need to be accurately measured. At these small gaps, the high order multipoles influence on electron beam dynamics is high, and it should be well characterized in order to guarantee a feasible operation of the accelerator. To face this challenge, ALBA magnetics measurement laboratory has developed a new rotating coil shaft with a diameter of 10 mm able to be introduced inside narrow-gap multipolar magnets. In this paper we present the design as well as the first characterization of such a device.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS057  
About • paper received ※ 11 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS060 Sirius Digital LLRF LLRF, cavity, FPGA, booster 4244
 
  • A. Salom, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • R.H.A. Farias, F.K.G. Hoshino, A.P.B. Lima
    LNLS, Campinas, Brazil
 
  Sirius is a Synchrotron Light Source Facility based on a 4th generation low emittance storage ring. The facility is presently under construction in Campinas, Brazil, and comprises a 3 GeV electron storage ring, a full energy booster synchrotron and a 120 MeV linac. The booster RF system is based on a single 5-cell cavity driven by a 50 kW amplifier at 500MHz and is designed to operate at 2 Hz rate. The storage ring RF system will start with 1 normal conducting 7-cell cavity. In the final configuration, the system will comprise 2 superconducting cavities, each one driven by a 240 kW RF amplifier. A digital LLRF system based on ALBA LLRF has been designed and commissioned to control 3 different types of cavities: 2 normal conducting single cell cavities, one multi-cell cavity driven by 2 amplifiers and one superconducting cavity driven by 4 amplifiers. The first LLRF System was installed and commissioned in the Sirius Booster in 2019. The performance of the control loops with beam, together with other utilities of the system like automatic start-up, conditioning, fast interlocks and post-mortem analysis will be presented in this paper, as well as possible upgrades for the future  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS060  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS069 A Monitoring System for TPS Linac linac, PLC, operation, injection 4272
 
  • C.L. Chen, H.-P. Chang, C.-S. Fann, K.L. Tsai
    NSRRC, Hsinchu, Taiwan
 
  Abstract Since 2014, TPS Linac system has been operating regularly. In order to keep a high stability during a long operating time, it is important to develop a monitoring system to monitor all sub-systems, parameters, including setting values, reading values, control inputs and outputs. This system is not only recording all above mentioned parameters, but also provides an efficient diagnosis in case of troubleshooting. Because the controlling system in TPS Linac is using Siemens S7-300 PLCs, Simatic WinCC is utilized to develop a historical archiving, operational analyses, and operator activities in operation. This paper attempts to show a complete solution for the integrated software structure and its resulting process analysis.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS069  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS070 Diagnostic Tool For CompactPCI Crates EPICS, status, diagnostics, network 4275
 
  • H.Z. Chen, C.H. Chen, Y.-S. Cheng, K.T. Hsu, K.H. Hu, C.Y. Liao, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  On the control system hardware platform for the Taiwan Photon Source (TPS) more than half use CompactPCI crates. If a crate malfunctions, the internal crate card will not operate properly affecting accelerator operation. If the crate, however, could provide instant remote operational information, an opportunity exists to maintain or replace it in advance. Therefore, a diagnostic tool was developed to analyse and diagnose the condition of the crates. When abnormal operations occur, an alarm can be issued for early inspection and maintenance. This way it is possible to prevent the EPICS IOC from crashing by CompactPCI crates, which improves the reliability of accelerator operation. A detailed system architecture, implementation and progress will be discussed in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS070  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS071 Performance of TPS Cryogenic Permanent Magnet Undulators at NSRRC undulator, vacuum, permanent-magnet, cryogenics 4278
 
  • J.C. Huang, C.S. Yang, C.K. Yang
    NSRRC, Hsinchu, Taiwan
  • H. Kitamura
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • T. Kohda
    NEOMAX Engineering Co., Ltd., Tokyo, Japan
 
  Development of cryogenic permanent magnet un-dulators (CPMUs) is the most recent activity for Phase-II beamlines at the Taiwan Photon Source. A hybrid-type CPMU with a period length of 15 mm, based on PrFeB permanent-magnet materials, is under construc-tion. A maximum effective magnetic field of 1.33 T at a gap of 4 mm is obtained at 80 K.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS071  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS075 Performance Tests of a Digital Low-Level Rf-System at the TPS LLRF, beam-loading, cavity, storage-ring 4292
 
  • F.Y. Chang, L.-H. Chang, M.H. Chang, S.W. Chang, L.J. Chen, F.-T. Chung, Y.T. Li, M.-C. Lin, Z.K. Liu, C.H. Lo, Ch. Wang, M.-S. Yeh, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  A digital low-level RF (DLLRF) control system for the cavity gap voltage is now common throughout the world. At the Taiwan Photon Source (TPS) we installed and operated a DLLRF in the booster ring in 2018 successfully and plan to install it also in the storage ring in 2019. Operational and beam loading tests of the DLLRF at the storage ring are ongoing. The performance of the DLLRF in the presence of a large number of 60 Hz harmonics and its stability for gap voltage and phase will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS075  
About • paper received ※ 10 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS086 Design of a CCD-based Laser Alignment Detection System laser, alignment, detector, vacuum 4311
 
  • J.X. Chen
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • X.Y. He, W. Wang, H.T. Zhang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Funding: Work supported by National Natural Science Foundation of China (11705199)
Accelerator online alignment technology is an important means for accelerator stability detecting. A CCD-based laser alignment detection system is designed for the linear accelerator, and the detection distance of the system could reach 100m. The reference comparison method is used to detect the laser imaging position acquired by the reference detector at different times, and to obtain the relative positional deviation of the measurement reference or the tested objects. Through the measurement error analysis, the precision of the system is expected to reach ±10μm.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS086  
About • paper received ※ 11 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS102 Radio Frequency Power Stations for ESS LINAC Spoke Section operation, power-supply, cavity, site 4346
 
  • C. Pasotti, M. Cautero, T. N. Gucin
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • C.A. Martins, R.A. Yogi
    ESS, Lund, Sweden
 
  26 equivalent 400 kW Radio Frequency Power Station (RFPS) units will be provided by Elettra as part of the Italian in kind contribution to ESS. They will be installed in the LINAC "Spoke Section". Each RFPS will power a single superconducting spoke cavity in pulsed operation at 352.21 MHz. The RFPS is a complete system that operates unmanned, based on a combination of solid state and tetrode amplification’s stages. The tender specification, the RFPS main features and requested performances are reported here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS102  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)