Keyword: cyclotron
Paper Title Other Keywords Page
MOPGW116 Validation of a Novel Method for the Calculation of Near-Field Synchrotron Radiation electron, acceleration, radiation, synchrotron 397
 
  • F.Y. Li, B.E. Carlsten, R. Garimella, C. Huang, T.J. Kwan
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the LDRD program at LANL.
The phenomenon of synchrotron radiation (SR) from electrons is at the core of modern accelerator based light sources. While SR in the far field has been well characterized, the near-field SR and its impacts on self-consistent electron beam dynamics remain an ongoing topic. Since it is difficult to experimentally characterize the near fields, it is desirable to develop accurate and efficient numerical methods for the design of these light sources. Here, we investigate a novel method, originally proposed by Shintake and which potentially has both high efficiency and accuracy. We focus on the field calculation of this method and show that the original idea has missed the important terms of fields due to electron acceleration and therefore only applies to a linear motion. To correct this limitation we developed a modified algorithm that gives consistent fields with direct calculations using the Liénard-Wiechert equation. Some basic signatures of the near-field SR fields are also drawn for a cyclotron motion by using this modified approach.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW116  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS004 Development of a Penning Ion Source Test Stand for Production of Alpha Particles ion-source, cathode, plasma, electron 1932
 
  • N. Savard
    UBC, Vancouver, B.C., Canada
  • M.P. Dehnel, P.T. Jackle, S.V. Melanson, D.E. Potkins, J.E. Theroux
    D-Pace, Nelson, British Columbia, Canada
  • G. M. Marcoux
    Carleton University, College of Natural Sciences, Ottawa, Ontario, Canada
 
  Medical cyclotron manufacturers are seeking less-costly and more compact ion sources than Electron Cyclotron Resonance Ion Sources (ECRIS) for alpha particle production, which are currently capable of generating beam currents up to 2 mA at energies of 30 keV for axial injection into these cyclotrons. Penning Ion Sources by comparison are relatively old technologies mostly used for cheap singly-charged ion production. However, these ion sources have been used in the past for high-current multiply-charged state ion production of heavy ions up to a few mA of current, and are much smaller, cheaper, and less complex than ECRISs. Therefore, we are developing a Penning Ion source test stand to produce high-current alpha-particles for medical cyclotrons. This requires designs and simulations of all the primary components of the ion source. This system will be used to fully characterize the output beam current and internal plasma properties as a function of varying gas pressure, ion source geometries, magnetic field strength, arc voltage/current, and material properties. The result will be a source optimized for maximum alpha particle beam currents, to be used as a prototype for a commercial Penning Ion Source.
* J. Bennet. A Review of PIG Sources for Multiply Charged Heavy Ions. IEEE Transactions on Nuclear Science, 1972.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS004  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS008 The Pulsing Chopper-Based System of the Arronax C70XP Cyclotron controls, solenoid, proton, injection 1948
 
  • F. Poirier
    CNRS - DR17, RENNES, France
  • G. Blain, M. Fattahi, F. Haddad, J. Vandenborre
    SUBATECH, Nantes, France
  • F. Bulteau-harel, X. Goiziou, C. Koumeir, A. Letaeron, F. Poirier
    Cyclotron ARRONAX, Saint-Herblain, France
 
  Funding: This work is, in part, supported by a grant from the French National Agency for Research called "Investissements d’Avenir", Equipex Arronax-Plus noANR-11-EQPX-0004 and LabexIRON noANR-11-LABX-18-01.
The Arronax Public Interest Group (GIP) uses a multi-particle cyclotron to perform irradiation from a few pA up to hundreds of uA on various experiments and targets *. To support further low intensity usage and extend the beam time structure required for experiments such as pulsed experiments studies (radiolysis, proton therapeutic irradiation) and high intensity impact studies, it has been devised a pulsing system in the injection of the cyclotron. This system combines the use of a chopper, low frequency switch, and a control system based on the new extended EPICS network. This paper details the pulsing system adopted at Arronax, the last results in terms of time structure, various low intensity experimental studies performed with alpha and proton beams and the dedicated photon diagnostics.
* F.Poirier et al., "Studies and Upgrades on the C70 Cyclotron Arronax", CYC16, September 2016, TUD02.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS008  
About • paper received ※ 12 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS021 Basic Design of the RF Power System for IRANCYC-10 Accelerator simulation, ISOL, vacuum, operation 1972
 
  • M. Dehghan, F. Abbasi
    Shahid Beheshti University, Tehran, Iran
  • H. Azizi
    ILSF, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
  • A. Taghibi Khotbeh-Sara
    KNTU, Tehran, Iran
 
  In this paper the basic design of an RF system to produce the required power of IRANCYC-10 cyclotron accelerator is reported. The designed system can generate 15 kW power at the operating frequency of 71 MHz CW. The authors provide a step-by-step ex-planation of the process of the design. It is carried out in three sections; (1) RF design features of the acceler-ator is investigated and power value is calculated in accordance with the requirements of the cyclotron, (2) the choice of solid state amplifiers as the RF power source is presented with its available power and struc-ture, (3) design of insertion instruments is reported to transfer and combine the RF power. The purpose of the paper is to achieve the best performance of the RF system, as well as decreasing overall size by using modular devices.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS021  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS023 A CENTRAL REGION UPGRADE OF THE k800 SUPERCONDUCTING CYCLOTRON AT INFN-LNS extraction, injection, simulation, acceleration 1975
 
  • G. D’Agostino, L. Calabretta, D. Rifuggiato
    INFN/LNS, Catania, Italy
  • W.J.G.M. Kleeven
    IBA, Louvain-la-Neuve, Belgium
 
  The Superconducting Cyclotron (CS) at INFN-LNS in Catania is currently under an upgrade process. The plan is to deliver beams of ions with mass number 𝐴 ≤ 40 with power up to 10 kW. This ambitious goal can be achieved increasing the efficiency of the injection and extraction processes. An extraction efficiency close to 100% is expected by extracting the specific ion beams from the CS by stripping and no longer by electrostatic deflectors. The beams are injected axially and bent onto the median plane with a spiral inflector. Currently, the injection efficiency stays around 15%, also including the effect of a drift buncher placed in the axial injection line. In order to increase the injection efficiency, the study of an upgraded CS central region is ongoing at INFN-LNS. In this paper, the results of simulations of beam tracking through the cyclotron axial bore, the spiral inflector, the central region and further up to the extraction system are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS023  
About • paper received ※ 29 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS028 Extraction System of Upgraded AVF Cyclotron of RCNP proton, extraction, septum, injection 1993
 
  • M. Nakao, M. Fukuda, S. Hara, T. Hara, K. Hatanaka, K. Kamakura, H. Kanda, H.W. Koay, S. Morinobu, Y. Morita, K. Nagayama, T. Saito, K. Takeda, H. Tamura, Y. Yasuda, T. Yorita
    RCNP, Osaka, Japan
 
  The AVF cyclotron of RCNP have been utilized for the purposes of basic research in physics, RI production for medicine and industrial applications as well as injector of ring cyclotron. Increasing beam intensity without decreasing beam quality can make improvements in all purposes. The improvement and repair of the AVF cyclotron are being carried out currently. We designed the new LEBT, injection, acceleration and extraction systems and we report on the extraction system here. High extraction efficiency is indispensable when increasing the beam intensity since beam loss causes activation of apparatus. New extraction system consists of deflector electrodes and two gradient correctors and probes. One gradient corrector causes a horizontally focus effect on the beam and the other causes horizontally defocus effect to avoid spreading of the beam with strong defocus effect caused by the main cyclotron magnetic field. Simulation study confirmed that 10 MeV proton, 65 MeV proton and 140 MeV alpha particles with 2 mm × 3 mrad could pass through the newly designed extraction system and the existing beam transport line. Beam simulation has been performed by utilizing SNOP* and OPAL** codes.
* SNOP V.L. Smirnov, S.B. Vorozhtsov, Proc. of RUPAC2012 TUPPB008 325 (2012)
** The OPAL (Object Oriented Parallel Accelerator Library) Framework, Andreas Adelmann et al., PSI-PR-08-02, (2008-2018)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS028  
About • paper received ※ 01 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS050 Design and Analysis of the Cold Cathode Ion Source for 200 MeV Superconducting Cyclotron cathode, ion-source, electron, proton 2040
 
  • S.W. Xu
    USTC, Hefei, Anhui, People’s Republic of China
  • L. Calabretta
    INFN/LNS, Catania, Italy
  • G. Chen, M. Xu
    ASIPP, Hefei, People’s Republic of China
  • O. Karamyshev, G.A. Karamysheva, G. Shirkov
    JINR, Dubna, Moscow Region, Russia
 
  SC200 is a superconducting isochronous cyclotron which generates 200 MeV, 400 nA proton beam for particle therapy. The cold-cathode-type Penning ion gauge (PIG) ion source for the internal ion source of SC200 has been selected as an alternative and preliminary designed. In this paper, design of ion source and test bench are demonstrated. Currently, the properties of ion source have been simulated for a variety of electric field distributions and magnetic field strengths. The secondary electron emission in electromagnetic field has been simulated. It provides reference for the optimization design of arc chamber. In addition, the sample of cold-cathode-type ion source has been tested on the test bench and extracted beam intensity has been measured over 200 μA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS050  
About • paper received ※ 30 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS059 Conceptual Design of the SC230 Superconducting Cyclotron for Proton Therapy cavity, proton, acceleration, simulation 2058
 
  • O. Karamyshev, S. Gurskiy, G.A. Karamysheva, D.V. Popov, G. Shirkov, S.G. Shirkov, V.L. Smirnov, S.B. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
 
  Physical design of the compact superconducting cyclotron SC230 (91.5MHz) has been performed. The cyclotron will deliver up to 230 MeV beam for proton therapy and medico-biological research. We have performed simulations of magnetic and accelerating systems of the SC230 cyclotron and specified the main parameters of the accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS059  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS060 Beam Dynamics Simulations in the Dubna SC230 Superconducting Cyclotron for Proton Therapy extraction, simulation, acceleration, proton 2061
 
  • G.A. Karamysheva, S. Gurskiy, O. Karamyshev, D.V. Popov, G. Shirkov, S.G. Shirkov, V.L. Smirnov, S.B. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
  • V. Malinin
    JINR/DLNP, Dubna, Moscow region, Russia
 
  We present results of the beam dynamics simulation for the compact isochronous superconducting cyclotron SC230. We have performed beam tracking starting from the ion source. The extraction system scheme and results of beam extraction simulations are presented. The codes and methods used for beam tracking are briefly described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS060  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW006 Development of a Beam Loss Monitor and Transverse Beam Dynamics Studies at ARRONAX C70XP Cyclotron experiment, radiation, operation, quadrupole 2470
 
  • A. Sengar, X. Goiziou, F. Gomez Serito, C. Koumeir, F. Poirier
    Cyclotron ARRONAX, Saint-Herblain, France
  • F. Haddad
    SUBATECH, Nantes, France
 
  Funding: "Investissements d’Avenir", Equipex Arronax-Plus, Institute of Nuclear and Particle Physics from the National Scientific Research center (CNRS) and the Regional Council of Pays de la Loire, France.
The ARRONAX Interest Public Group uses a multi-particle, high energy and high intensity industrial accelerator which has several beamlines used for various purposes. For improvement of operations, ARRONAX has foster and installed robust air-based Beam Loss Monitors (BLMs) outside the beam pipes. BLMs consist of four active detecting plates and are integrated within the experimental physics and industrial control system (EPICS) monitoring and data acquisition system. Each BLM has been tested for the pre-commissioning phase with beams at low intensity (600pA to 6nA on target). Comparative studies and selection of the BLMs has led to their installation at high intensity beam lines. BLMs are now used in beam dynamics studies to investigate transverse characteristics while in regular operation. They support present and future operations extension foreseen at ARRONAX. The results from experimental studies on BLMs at low beam intensity and status of beam dynamics studies at high intensity (A) are presented here. Keywords: BLM, beam dynamics, EPICS, Gas ionization detector, cyclotron, proton.
*F. Poirier, S. Girault, STUDIES AND UPGRADES ON THE C70 CYCLOTRON ARRONAX, Proceedings of Cyclotrons 2016, Zurich, Switzerland
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW006  
About • paper received ※ 30 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW112 Energy Calibration of the Rea3 Accelerator by Time-of-Flight Technique* dipole, linac, detector, electron 2760
 
  • A.C.C. Villari, D.B. Crisp, A. Lapierre, S. Nash, T. Summers, Q. Zhao
    NSCL, East Lansing, Michigan, USA
 
  Funding: * This material is based upon work supported by the National Science Foundation under Grant No. PHY15-65546.
We report on a simple method to perform an absolute calibration of the magnetic beam analyser of the reaccelerator ReA3 at the National Superconducting Cyclotron Laboratory. The method is based on the time of flight between two beam stoppers 7.65 m apart. Based on two independent time-of-flight measurements at three different beam energies, the beam analyser magnet is calibrated with an accuracy of 0.12 %, corresponding to a beam energy accuracy of 0.24 %.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW112  
About • paper received ※ 25 April 2019       paper accepted ※ 28 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB030 Commissioning of RF System of the 200 MeV Proton Cyclotron cavity, multipactoring, MMI, coupling 2877
 
  • G. Chen, C. Chao, G. Liu, X.Y. Long, Z. Peng, C.S. Yu, X. Zhang, Y. Zhao
    ASIPP, Hefei, People’s Republic of China
  • L. Calabretta, A.C. Caruso
    INFN/LNS, Catania, Italy
  • O. Karamyshev, G.A. Karamysheva, G. Shirkov
    JINR, Dubna, Moscow Region, Russia
 
  Funding: (1) National Natural Science Foundation of China under grant No. 11775258, 11575237; (2) International Sci-entific and Technological Cooperation Project of An-hui (grant No. 1704e1002207).
The SC200 superconducting accelerator which is designed for proton therapy is currently under con-struction. The RF (Radio Frequency) system has been designed and constructed as a subsystem of the SC200. To verify the stability of the RF system, a high-power feeding test was performed for the cavity. This paper mainly reports on the overview of RF systems and the prelimary high-power commissioning, as well as the problems found and improvements made during the commissioning process. The results show that the RF system has initially achieved the designed goal, and each loop (amplitude, tuning, phase) can work effec-tively. The cavity can operate in a ~50 kW continuous wave state. Next, the formal RF conditioning will be carried out after the complete assembly of cyclotron, so as to confirm the cavity can run smoothly under 80 kW, which is part of the whole commissioning process.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB030  
About • paper received ※ 22 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP029 Design Study of a Compact Superconducting Cyclotron SC240 for Proton Therapy proton, extraction, focusing, superconducting-magnet 3506
 
  • F. Jiang, G. Chen, Y. Chen, K.Z. Ding, J. Li, Y. Song, Z. Wu, J. Zhou
    ASIPP, Hefei, People’s Republic of China
  • Z. Zhong
    HFCIM, HeFei, People’s Republic of China
 
  Funding: National Natural Science Foundation of China under grant No. 11775258 & 11575237; International Scientific and Technological Co-operation Project of Anhui (grant No. 1704e1002207).
A compact AVF cyclotron of 240 MeV is under-designed for proton therapy. In order to reduce the size, the weight and operation cost, two superconducting coils are designed to implement the 2.35T central field. And the magnet weight is about 90 tons. The constant gap between the sectors is considered without deteriorating the beam stability. A dedicated design on extraction zone is performed to make the average field to close the isochronous field. The extraction efficiency is expected higher than 80%, by regulating the 1st harmonic field and arranging the extraction elements properly. In order to avoid the large scale of volume helium explosion in the quench, the low temperature superconducting coil using NbTi/Cu wire is cooled by 4K GM Cryocooler in a helium volume limiting design. The paper will present the physical design of this cyclotron.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP029  
About • paper received ※ 17 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP043 Non-Invasive Beam Monitoring Using LHCb VELO With 40 MeV Protons detector, proton, experiment, monitoring 3541
 
  • R. Schnuerer, C.P. Welsch, J.S.L. Yap, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • T. Price
    Birmingham University, Birmingham, United Kingdom
  • R. Schnuerer, C.P. Welsch, J.S.L. Yap, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • T. Szumlak
    AGH, Cracow, Poland
 
  Funding: EU grant agreements 215080 and 675265, the Cockcroft Institute core Grant (ST/G008248/1), national agency: MNiSW and NCN (UMO-2015/17/B/ST2/02904) and the Grand Challenge Network+ (EP/N027167/1).
In proton beam therapy, knowledge of the detailed beam properties is essential to ensure effective dose delivery to the patient. In clinical practice, currently used interceptive ionisation chambers require daily calibration and suffer from slow response time. This contribution presents a new non-invasive method for dose online monitoring. It is based on the silicon multi-strip sensor LHCb VELO (VErtex LOcator), developed originally for the LHCb experiment at CERN. The semi-circular detector geometry offers the possibility to measure beam intensity through halo measurements without interfering with the beam core. Results from initial tests using this monitor in the 40 MeV proton beamline at the University of Birmingham, UK are shown. Synchronised with an ionisation chamber and the RF cyclotron frequency, VELO was used as online monitor by measuring the intensity in the proton beam halo and using this information as basis for 3D beam profiles. Experimental results are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP043  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP051 Development of 211-Astatine Production in the Crocker Nuclear Laboratory Cyclotron target, operation, proton, extraction 3564
 
  • E. Prebys
    Fermilab, Batavia, Illinois, USA
  • R.J. Abergel
    UCB, Berkeley, California, USA
  • W.H. Casey
    University of California at Davis (UC Davis), Davis, California, USA
  • D.A. Cebra
    UCD, Davis, California, USA
 
  There is a great deal of interest in the medical community in the use of the alpha-emitter 211-At as a therapeutic isotope. Among other things, its 7.2 hour half life is long enough to allow for recovery and labeling, but short enough to avoid long term activity in patients. Unfortunately, the only practical technique for its production is to bombard a 209-Bi target with a ~29 MeV alpha beam, so it is not accessible to commercial isotope production facilities, which all use fixed energy proton beams. The US Department of Energy is therefore supporting the development of a "University Isotope Network" (UIN) to satisfy this need. Our prposoal is to retrofit the variable-energy, multi-species cyclotron at the Crocker Nuclear Laboratory at the University of California Davis with an internal Bi-209 target, such that we can put at least 100 uA of 29 MeV alpha particles on target without concerns about extraction efficiency. Using very conservative assumptions, we are confident we will be able to produce 60 mCi of 211-At in solution in an eight hour shift, which includes setup, exposure, and chemical recovery. This poster will cover the design of the target, as well as the required chemical processing and reliability upgrades.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP051  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP052 Recent Progress in R&D for Ionetix Ion-12SC Superconducting Cyclotron for Production of Medical Isotopes ion-source, target, controls, cathode 3568
 
  • X. Wu, G.F. Blosser, G.S. Horner, Z.S. Neville, J.M. Paquette, N.R. Usher, J.J. Vincent
    Ionetix, Lansing, Michigan, USA
  • D.M. Alt
    NSCL, East Lansing, Michigan, USA
 
  The Ion-12SC is a sub-compact, 12.5 MeV proton su-perconducting isochronous cyclotron for commercial medical isotope production recently developed at Ionetix Corporation [1]. The machine features a patented cold steel and cryogen-free conduction cooling magnet, a low power internal cold-cathode PIG ion source, and an inter-nal liquid target [2]. It was initially designed to produce N-13 ammonia for dose on-demand cardiology applica-tions but can also be used to produce F-18, Ga-68 and other medical isotopes widely used in Positron Emission Tomography (PET). The 1st engineering prototype was completed and commissioned in September 2015, and four additional units have been completed since [3]. The first two units have been installed and operated at the University of Michigan and MIT. R&D efforts in physics and engineering have continued to improve machine performance, stability and reliability. These improve-ments include: 1) Water cooling added to the dummy dee to limit the operating temperature of the ion source to improve lifetime and performance, 2) Magnetic field maps, obtained with a Hall probe based mapper, were used to accurately measure the isochronism and provide information needed to compensate for any unwanted 1st harmonics and 3) Feedback based control methods ap-plied to regulate the beam intensity on target by adjusting the ion source cathode current. The C1 unit installed at the University of Michigan Medical School early this year treated ~100 patients/month with N-13 ammonia. The machines are now capable of routinely producing > 21 doses/day with > 99% availability. The Ionetix manu-facturing facility is capable of producing up to 30 ma-chines per year.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP052  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW005 Recent Developments of the 520 MeV Cyclotron’s High-Power RF System at TRIUMF operation, simulation, rf-amplifier, coupling 3591
 
  • N.V. Avreline, Y. Bylinskii, D. Gregoire, B. Jakovljevic, R.E. Laxdal, X. Wang, B.S. Waraich, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  520 MeV Cyclotron’s High-Power RF System has been in the state of continuous operation for over 50 years since its commissioning. This paper describes the recent upgrades of the RF System, the main goal of which was to improve reliability. Specially, we discuss the upgrades done to the RF Transmission Line (TL), the RF Power Amplifier (PA) components and their diagnostics tools. We upgraded the structure of Intermediate Power Amplifier (IPA), installed Solid State (SS) driver and are in the process of replacing tubes with a SS option for IPA and PA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW005  
About • paper received ※ 08 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW047 Cylindrical Cavity Design and Particle-Tracking Simulation in Cyclotron Auto-Resonance Accelerator electron, cavity, resonance, acceleration 3689
 
  • Y.T. Yuan
    HUST, Wuhan, People’s Republic of China
  • K. Fan
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People’s Republic of China
  • Y. Jiang
    Yale University, Beam Physics Laboratory, New Haven, Connecticut, USA
 
  The Cyclotron Auto-Resonance Accelerator (CARA) is a novel concept of accelerating continuous-wave (CW) charged-particle beams. This type of accelerator has ap-plications in environment improvement area and genera-tion of high-power microwaves. In CARA, the CW elec-tron beam follows a gyrating trajectory while undergoing the interaction with a rotating TE11-mode RF field and tapered static magnetic field. The cylindrical cavity oper-ating at TE11p-mode is adapted to accelerate electron beam. The cavity size is optimized to obtain a beam with designed energy, then a design method of the TE11p-mode acceleration cavity is described here. Moreover, regard-less of space charge effect, several particle-tracking simu-lations of CARAs are showed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW047  
About • paper received ※ 16 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)