Keyword: FEL
Paper Title Other Keywords Page
MOYPLM2 SRF Operation at XFEL: Lessons Learned After More Than One Year cavity, operation, linac, SRF 12
 
  • D. Kostin, V. Ayvazyan, J. Branlard, W. Decking, L. Lilje, M. Omet, T. Schnautz, E. Vogel, N. Walker
    DESY, Hamburg, Germany
 
  The European XFEL is the largest high-field SRF installation in the world and has now been in operation more than a year. It serves as a "prototype" for other facilities being constructed or in the planning stages. Performance of the operation of the SRF system over this period of time and the lessons learned will be discussed.  
slides icon Slides MOYPLM2 [4.351 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOYPLM2  
About • paper received ※ 10 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW016 Straightness Correction of Ballistic Trajectories alignment, undulator, quadrupole, focusing 101
 
  • V. Balandin, W. Decking, N. Golubeva, M. Scholz
    DESY, Hamburg, Germany
 
  We describe procedure for straightness correction of ballistic trajectories in the presence of BPM noise and unknown BPM offsets. We also discuss applicability of this method to the beam based alignment of the European XFEL undulators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW016  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW038 Collimator’s Impact Into the Transverse Emittance Growth at KEK Compact ERL wakefield, emittance, simulation, operation 174
 
  • O. A. Tanaka, T. Miyajima, N. Nakamura, T. Obina, M. Shimada, Y. Tanimoto
    KEK, Ibaraki, Japan
 
  In high-intensity particle accelerators, unwanted trans-verse and longitudinal wakefields arise when the high-charge particle beam passes through the narrow chambers or locations with small transverse apertures, such as collimator jaws. Transverse wakefields impose a transverse kicks to the beam, changing its shape, and leading to the growth of the transverse emittance. Longitudinal wakes cause the beam energy losses, heating of the narrow chambers etc. In the present study we investigated the collimator’s impact to the beam. Thus, we evaluated the collimator’s wakefields through the CST simulations. We estimated the corresponding transverse kicks and longitudinal wakes. In the summary simulation results were cross-checked with correspondent analytical expressions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW038  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW062 Radiation of a Charge Moving in a Wire Structure radiation, simulation, lattice, electron 231
 
  • S.N. Galyamin, A.V. Tyukhtin, V.V. Vorobev
    Saint Petersburg State University, Saint Petersburg, Russia
  • A.I. Benediktovitch
    EuXFEL, Hamburg, Germany
  • A.I. Benediktovitch
    BSU, Minsk, Belarus, Belarus
 
  Funding: This work is supported by the grant from Russian Foundation for Basic Research (No. 17-52-04107).
In the X-ray frequency region, interaction of relativistic electrons with crystals results in parametric X-ray radiation (PXR), with its frequency being determined by distance between crystallographic planes and direction of electron motion. If instead of crystal one considers an artificial periodic structure with periods of the order of mm, one can expect emission of radiation of a similar nature at terahertz (THz) frequencies. This frequency range is of significant interest during last decade due to its prospective applications. Moreover, artificial wire-like structures are considered as a promising alternative to conventional dielectric structures for wakefield acceleration*. Here we consider electromagnetic (EM) field produced by a charged particle bunch moving through a lattice of parallel conducting wires. We present several approaches for analysis of EM field in the described wire structure. First, conventional two-wave approximation for describing the "short-wave response" is developed. Second, we use the effective medium approach and describe the "long-wave" part of the spectrum. Third, we develop a method based on vibrator antenna theory which can be useful for finite length wire structure.
* P.D. Hoang, et al., Phys. Rev. Lett., V. 120, P. 164801 (2018).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW062  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW067 On Coordinate Systems in Beam Dynamics simulation, GUI, experiment, acceleration 243
 
  • E. Laface
    ESS, Lund, Sweden
 
  Any description of the beam dynamics calculation and simulation relies on the proper choice of a coordinate system in order to minimize the computational complexity and to apply different level of approximations in the calculations. This need generates a large number of reference systems, especially to describe the longitudinal dynamics of a particle beam like(z, z′),(t,∆P/P),(z, φ), etc. In this paper we summarize the rules to change coordinates systems, which system is canonical and how the Hamiltonian of the beam transforms according to the chosen coordinate system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW067  
About • paper received ※ 10 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW073 Beam Manipulation Using Self-Induced Fields at the SwissFEL Injector simulation, electron, experiment, wakefield 266
 
  • S. Bettoni, P. Craievich, E. Ferrari, R. Ganter, F. Marcellini, E. Prat, S. Reiche
    PSI, Villigen PSI, Switzerland
  • A.A. Lutman
    SLAC, Menlo Park, California, USA
  • G. Penco
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  In the past years wakefield sources have been used to manipulate electron beams in accelerators. We recently installed corrugated structures for a total length of 2~m at the SwissFEL injector to test novel schemes for beam manipulations. We present simulations and early experimental results. We compare the model predictions with the measured data for the bunch energy losses and the kick factor, and show early results for the longitudinal phase space linearization and the production of current spikes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW073  
About • paper received ※ 09 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW111 Start to End Simulation on Beam Dynamics in Coherent Electron Cooling Accelerator electron, bunching, emittance, cavity 379
 
  • Y.C. Jing, V. Litvinenko, I. Petrushina, I. Pinayev, K. Shih, Y.H. Wu
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
  • K. Shih
    SBU, Stony Brook, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A Coherent electron Cooling (CeC) has a potential of substantial reducing cooling time of the high-energy hadrons and hence to boost luminosity in high-intensity hadron-hadron and electron-hadron colliders. In a CeC system, a high quality electron beam is generated, propagated and optimized through a beam line which was carefully designed with consideration of space charge effect, wakefields and nonlinear dynamics such as coherent synchrotron radiation and chromatic aberration. In this paper, we present our study on the beam dynamics of such a beam line and compare the simulation result with what was measured in experiment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW111  
About • paper received ※ 17 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP050 Performance of CeC PoP Accelerator electron, gun, SRF, hadron 559
 
  • I. Pinayev, Z. Altinbas, J.C. Brutus, A.J. Curcio, A. Di Lieto, T. Hayes, R.L. Hulsart, P. Inacker, Y.C. Jing, V. Litvinenko, J. Ma, G.J. Mahler, M. Mapes, K. Mernick, K. Mihara, T.A. Miller, M.G. Minty, G. Narayan, F. Severino, K. Shih, Z. Sorrell, J.E. Tuozzolo, E. Wang, G. Wang, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Coherent electron cooling experiment is aimed for demonstration of the proof-of-principle demonstration of reduction energy spread of a single hadron bunch circulating in RHIC. The electron beam should have the required parameters and its orbit and energy should be matched to the hadron beam. In this paper we present the achieved electron beam parameters including emittance, energy spread, and other critical indicators. The operational issues as well as future plans are also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP050  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB029 Longitudinal Tomography for Analysing the Longitudinal Phase Space Distribution in RCS of CSNS MMI, neutron, synchrotron, proton 639
 
  • M.T. Li
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • Y.W. An, S.Y. Xu, T.G. Xu
    IHEP, Beijing, People’s Republic of China
 
  It is proved that in the beam commissioning of the RCS of CSNS, the longitudinal optimization is vital for the promotion of the beam power. The WCM is the only beam instrument for the measurement of the longitudinal parameters. It is important for us to deduce the longitudi-nal phase space distribution, using the WCM data. The longitudinal tomography is applied, and some satisfying results have been obtained.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB029  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB056 THz Radiator Based on Photonic Band Gap Crystal for SwissFEL electron, photon, GUI, experiment 693
 
  • L. Shi, R. Ischebeck, S. Reiche
    PSI, Villigen PSI, Switzerland
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 701647.
The electromagnetic radiation in 1-20 THz has many unique properties when it interacts with matter due to its non-ionizing excitation in matter. Especially the dynamics of the excited matter can be probed with the help of X-ray pulses at a free electron laser facility, e.g. SwissFEL, to deepen our understanding of a wide range of phenomena. Due to its high research potential, various means of THz generation have been proposed and demonstrated. We investigate preliminarily here its generation based on a relativistic electron bunch and a photonic band gap crystal (PBG) made of dielectric rods. The PBG provides additional degrees of freedom for the THz pulse tuning. Additionally, the unwanted radiation parts can be damped by the structure in order to minimize the deleterious beam dynamics effects. The crystal also promises the integration of generation, filtering and coupling for transport into a single piece.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB056  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS117 Exploration of High-Gradient Structures for 4th Generation Light Sources cavity, linac, cryogenics, electron 1155
 
  • S.J. Smith, S. Biedron, S.I. Sosa Guitron
    University of New Mexico, Albuquerque, USA
  • T.B. Bolin
    Element Aero, Chicago, USA
  • B.E. Carlsten, F.L. Krawczyk
    LANL, Los Alamos, New Mexico, USA
  • J.R. Cary, D.M. Cheatham
    Tech-X, Boulder, Colorado, USA
 
  As the energy, scale and therefore the cost of large-scale accelerator projects, such as X-ray free-electron lasers (XFELs) increases, new technologies must be developed in order to minimize costs and maximize efficiency wherever possible. One obvious way to reduce costs is to reduce the length of accelerating sections by utilizing higher accelerating gradients. Here we present the results of a study into the various structure options for FEL linacs, contrasting different frequencies, geometries and operating modes. An investigation into the possibility of using cryo-cooled travelling wave (TW) electron structures which allow for higher gradient operation by exploiting the anomalous skin effect is also detailed. Finally, we give simulation results from a number of commercial codes including VSim 9, for a hypothetical TW high gradient C-band structure design employing cryo-cooled technology. Breakdown effects, pulsed heating, tolerances, efficiencies and potential rf sources are also explored, all within the framework of typical FELs and their requirements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS117  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYPLM1 XFEL Performance Achieved at PAL-XFEL undulator, electron, photon, emittance 1182
 
  • H. Heo, M.-H. Cho, J.H. Han, H.-S. Kang, C. Kim, G. Kim, M.J. Kim, J.H. Ko, H.-S. Lee, C.-K. Min, I.H. Nam, K.-H. Park, C.H. Shim, H. Yang
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  The hard X-ray free electron laser at Pohang Accelerator Laboratory (PAL-XFEL) successfully completed the commissioning of SASE and started user operation in late 2016. Since then, the facility has demonstrated excellent stability with very small timing jitter of about 20 fs, and commissioned the self-seeding system over a wide range of photon energies, etc. The talk will provide an overview of the last three years at the PAL-XFEL, including some detailed experimental results, as well as future prospects for the laboratory.  
slides icon Slides TUYPLM1 [7.516 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUYPLM1  
About • paper received ※ 20 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZZPLM2 Status of Automated Optimization Procedures at the European XFEL Accelerator feedback, electron, undulator, status 1212
 
  • S. Tomin
    EuXFEL, Schenefeld, Germany
  • L. Fröhlich, M. Scholz
    DESY, Hamburg, Germany
 
  The European XFEL is in the operational stage since fall 2017. Since then, tuning of the FEL performance (e.g. of the photon pulse energy) has become increasingly important. Due to a large number of parameters to which FEL facilities are highly sensitive and their complex correlations, controlling and optimizing them in a speedy manner is becoming a very important and challenging task. Several automated optimization procedures were developed to optimize the FEL beam quality. In this work, we present the status and the results of these activities, as well as the optimization statistics.  
slides icon Slides TUZZPLM2 [5.882 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUZZPLM2  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP032 Design of Analog to Digital Converter Scheme for High - Precision Electromagnet Power supply controls, hardware, experiment, dipole 1309
 
  • M.J. Kim, Choi. Choi
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • J.H. Han, S.-H. Jeong, Y.G. Jung, H.-S. Kang, D.E. Kim, H.-G. Lee, S.B. Lee, S.J. Lee, B.G. Oh, K.-H. Park, H.S. Suh
    PAL, Pohang, Kyungbuk, Republic of Korea
  • M.S. Kim
    Dongguk University, Seoul, Republic of Korea
 
  This paper deals with the design of an analogue-to-digital converter (ADC) scheme for a highly precise magnet current supply (MPS). The MPSs are requires with stable and precise current specification in range of the ppm. To meet the requirements, the AD circuit is composed of parallel ADCs of low-medium resolution. Digitally, the oversampling and averaging are performed to increase both the effective resolution and the signal to noise ratio (SNR). The implemented AD circuit was improved about 18 dB (32 times oversampling). The MPS applied by the proposed ADC scheme provides more precise control and the stable current within 10 ppm at 200 A. The experiment used a dipole magnet of the PAL-XFEL and its results proved feasibility through precisely measurable DVM3458A (Keysight Co.).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP032  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP048 Current Status of Turkish Accelerator and Radiation Laboratory electron, radiation, cavity, status 1359
 
  • A.A. Aksoy, O.F. Elçim
    Ankara University Institute of Accelerator Technologies, Golbasi, Turkey
  • Ö. Karslı, C. Kaya, B. Koc
    Ankara University, Accelerator Technologies Institute, Golbasi, Turkey
 
  Funding: T.R. Presidency Strategy and Budget Office Grand No: 2006K-120470
Turkish Accelerator and Radiation Laboratory (TARLA) which is designed to deliver various accelerator based radiation sources, aims to be outstanding research instrument for users from both Turkey and region. Within the current scope of TARLA its superconducting accelerator will drive two of free electron laser (FEL) beamlines in order to provide Continuous Wave (CW) tunable radiation of high brightness in the mid- and far-infrared range as well as a Bremmstrahlung radiation station. Main components of TARLA, such as injector, superconducting accelerating modules and cryoplant are under commissioning currently. In this paper commissioning results and current status of facility are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP048  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW098 Fabrication & Cold Tests of a Millimeter-Period RF Undulator undulator, laser, GUI, electron 1643
 
  • F. Toufexis, B. J. Angier, D. Gamzina, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This project was funded by U.S. Department of Energy under Contract No. DE-AC02-76SF00515, and the National Science Foundation under Contract No. PHY-1415437.
To reduce the linac energy required for an FEL radiating at a given wavelength, and hence its size, a smaller undulator period with sufficient field strength is needed. Previous work from our group successfully demonstrated a microwave undulator at 11.424GHz, using a corrugated cylindrical waveguide operating at the HE11 modes. We have designed a mm-wave undulator cavity at 91.392GHz* with an equivalent undulator period of 1.75 mm. This undulator requires 1.4 MW for sub microsecond pulses for an equivalent K value of 0.1. In this work we present the mechanical design and fabrication of this 91.392 GHz RF Undulator, as well as preliminary cold test data.
* F. Toufexis and S.G. Tantawi, "A 1.75-mm Period RF-Driven Undulator", Proceedings of IPAC17.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW098  
About • paper received ※ 10 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB008 LUXE - a QED Experiment at the European XFEL experiment, electron, laser, photon 1694
 
  • F. Burkart, R.W. Aßmann, R. Brinkmann, W. Decking, N. Golubeva, B. Heinemann, M. Hüning, J. List, M. Wing
    DESY, Hamburg, Germany
  • M. Wing
    UCL, London, United Kingdom
 
  The proposed experiment aims to measure QED in the presence of strong fields and above the Schwinger critical field. An experiment is being considered at the European XFEL, which should be able to measure non-perturbative QED and its transition from the perturbative regime. This paper presents the current status of the LUXE (Laser und XFEL Experiment) design study. First layout considerations; accelerator beam line design, electron and laser beam parameters, radioprotection issues and first results of the start to end simulations will be presented and discussed in detail. An outlook concerning the implementation into the XFEL schedule and timeline of this experiment will be given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB008  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB010 FIRST DESIGN STUDIES OF A NC CW RF GUN FOR EUROPEAN XFEL gun, cathode, cavity, simulation 1698
 
  • S. Shu, Y. Chen, S. Lal, H.J. Qian, H. Shaker, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
 
  After the successful commissioning of the European XFEL in pulsed mode, continuous wave (CW) mode operation of European X-ray Free-Electron Laser (XFEL) is under considerations for future upgrade. DESY is push-ing R&D on CW electron sources. A fully superconducting CW gun is under experimental development at DESY in Hamburg, and a normal conducting (NC) CW gun is under physics design at the Photo Injector Test facility at DESY in Zeuthen (PITZ) as a backup option. A 217 MHz NC CW gun is developed from the LBNL 187 MHz VHF gun, with enhancement on both cathode gradient and gun voltage to further improve beam brightness. This paper presents the cavity RF design, multipacting (MP) simula-tions and beam dynamics studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB010  
About • paper received ※ 17 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB012 Design of High Power CW IR-THz Source for the Radiation Source ELBE Upgrade undulator, electron, radiation, linac 1702
 
  • P.E. Evtushenko, T.E. Cowan, U. Lehnert, P. Michel
    HZDR, Dresden, Germany
 
  The Radiation Source ELBE at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) is a user facility based on a 1 mA - 40 MeV CW SRF LINAC. Presently HZDR is considering upgrade options for the ELBE or its replacement with a new CW, SRF LINAC-based user facility. A part of the user requirements is the capability to generate IR and THz pulse in the frequency range from 0.1 through 30 THz, with pulse energies in the range from 100 uJ through a few mJ, at the repetition rate between 100 kHz and 1 MHz. This corresponds to the pulse energy increase, dependent on the wavelength by a factor from 100 through 1000. In this contribution, we outline key aspects of a concept, which would allow to achieve such parameters. Such key aspects are: 1 - use of a beam with longitudinal density modulation and bunching factor of about 0.5 at the fundamental frequency; 2 - achieving the density modulation through the mechanism similar to the one used in optical klystron (OK) and HGHG FEL; 3 - generating necessary for the modulation optical beam by an FEL oscillator, and 4 - using two electron injectors, where one injector provides beam for the FEL oscillator while second high charge injector provides beam for the high energy per pulse generation for user experiments. All-in-all the concept of the new radiation source is very similar to an OK, but operating with two beams simultaneously.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB012  
About • paper received ※ 21 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB013 Simulation Studies for a EEHG seeded FEL in the XUV laser, bunching, electron, simulation 1705
 
  • V. Grattoni, S. Ackermann, R.W. Aßmann, B. Faatz, T. Lang, C. Lechner, M.M. Mohammad Kazemi, G. Paraskaki, J. Zemella
    DESY, Hamburg, Germany
  • W. Hillert
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • S. Reiche
    PSI, Villigen PSI, Switzerland
 
  Echo-enabled harmonic generation (EEHG) is a promising technique for seeded free electron lasers (FELs) not only to go down to wavelengths of 4 nm, but also to simplify the schemes that are currently used to achieve a similar wavelength range (double cascade HGHG). Thus a study optimizing the EEHG performance in the wavelength range from 60 to §I{4}{nm} has been performed. The more critical working point, at 4 nm, is here analyzed in terms of seed laser energy stability for two different seed laser frequencies: visible and UV.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB013  
About • paper received ※ 30 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB018 Design Studies of a Proof-of-Principle Experiment on THz SASE FEL at PITZ undulator, laser, electron, experiment 1713
 
  • X. Li, P. Boonpornprasert, Y. Chen, J.D. Good, M. Groß, H. Huck, I.I. Isaev, C. Koschitzki, M. Krasilnikov, S. Lal, O. Lishilin, G. Loisch, D. Melkumyan, R. Niemczyk, A. Oppelt, H.J. Qian, H. Shaker, S. Shu, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
 
  A free-electron laser based THz source is undergoing design studies at the Photo Injector Test facility at DESY in Zeuthen (PITZ). It is considered as a prototype for pump-probe experiments at the European XFEL, benefiting from the fact that the electron beam from the PITZ facility has an identical pulse train structure as the XFEL pulses. In the proposed proof-of-principle experiment, the electron beam (up to 4 nC bunch charge and 200 A peak current) will be accelerated to 16-22 MeV/c to generate SASE radiations in an LCLS-I undulator in the THz range between 60 and 100 µm with an expected energy of up to ~1 mJ/pulse. In this paper, we report our simulations on the optimization of the photo-injector and the design of the transport and matching beamline. Experimental investigations on the generation, characterization and matching of the high charge beam in the existing 22-m-long beamline will also be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB018  
About • paper received ※ 30 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB019 Collimator Performance Study at the European XFEL alignment, gun, collimation, operation 1717
 
  • S. Liu, F. Brinker, W. Decking, L. Fröhlich, N. Golubeva, T. Wamsat, J. Wilgen
    DESY, Hamburg, Germany
 
  Beam halo collimation is of great importance for the high repetition rate operation at the European XFEL and for the future CW machines. At the European XFEL several different types of collimators are installed at different locations of the beam line, which include the gun collimators, the bunch compressor collimators, and the main and supplementary collimators in the collimation section. Beam halo measurements have been performed using the wire scanners downstream of the main linac, which show that large part of beam halo is collimated by the gun collimator. Remaining losses in the collimation section are mainly due to misalignment. Alignment using orbit bumps in the collimation section is performed and presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB019  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB020 Status of the European XFEL operation, electron, photon, MMI 1721
 
  • W. Decking, F. Brinker, L. Fröhlich, R. Kammering, T. Limberg, S. Liu, D. Nölle, M. Omet, M. Scholz, T. Wamsat
    DESY, Hamburg, Germany
 
  The European XFEL is a Hard X-ray Free Electron Laser based on superconducting accelerator technology. In operation since 2017, it now serves 3 FEL beamlines simultaneously for user experiments. We will report on the present operation of the linear accelerator, the beam distribution to the various beamlines and the performance of the FEL radiators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB020  
About • paper received ※ 15 May 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB021 Undulator Radiation Dose Caused by Synchrotron Radiation at the European XFEL undulator, radiation, simulation, vacuum 1724
 
  • S. Liu
    DESY, Hamburg, Germany
  • Y. Li, F. Wolff-Fabris
    EuXFEL, Hamburg, Germany
 
  Radiation damage of the undulators is a big concern for the light sources. At the European XFEL (EuXFEL), dosimeters based on on-line Radfets are used for the un-dulator radiation dose measurements. However, since the Radfets are not only sensitive to the electrons and neu-trons but also to the photons, it can capture the synchro-tron radiation (SR) generated in the undulators, which is not considered to be the main source for undulator radia-tion damage. Therefore, it is important to estimate the contribution of synchrotron radiation to the radiation doses measured by the Radfets. For this purpose, we have first calculated the synchrotron radiation profile using SPECTRA, and then put the profile into the tracking code BDSIM to track it through the whole undulator beam line. The radiation doses from SR have been simulated and compared with the measured values. The differences in the radiation doses measured by the Radfets before and after Pb shielding will also be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB021  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB023 Considerations for the Ultrahard X-ray Undulator Line of the European XFEL undulator, photon, electron, operation 1732
 
  • E. Schneidmiller, V. Balandin, W. Decking, M. Dohlus, N. Golubeva, D. Nölle, M.V. Yurkov, I. Zagorodnov
    DESY, Hamburg, Germany
  • G. Geloni, Y. Li, S. Molodtsov, J. Pflüger, S. Serkez, H. Sinn, T. Tanikawa, S. Tomin
    EuXFEL, Schenefeld, Germany
 
  The European XFEL is a multi-user X-ray FEL facility based on superconducting linear accelerator. Presently, three undulators (SASE1, SASE2, SASE3) routinely deliver high-brightness soft- and hard- X-ray beams for users. There are two empty undulator tunnels that were originally designed to operate with spontaneous radiators in the range 20-90 keV. We consider, instead a possible installation of two FEL undulators. One of them (SASE4) is proposed for operation in a standard (7-25 keV) range as well as in ultrahard (25-100 keV) regime. We discuss a possible location and length of SASE4, modifications of electron beam transport, beam dynamics, choice of undulator technology, different operation modes (SASE and advanced lasing concepts) etc.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB023  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB024 A Concept for Upgrade of FLASH2 Undulator Line undulator, polarization, electron, operation 1736
 
  • E. Schneidmiller, B. Faatz, I. Hartl, S. Schreiber, M. Tischer, M. Vogt, M.V. Yurkov, J. Zemella
    DESY, Hamburg, Germany
  • W. Wurth
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  FLASH is the first soft X-ray FEL user facility, routinely providing brilliant photon beams for users since 2005. There are plans to upgrade both existing undulator lines of this facility, FLASH1 and FLASH2. FLASH1 will mainly operate in XUV range in seeding and SASE modes, while FLASH2 will use the standard SASE regime as well as new lasing concepts aiming at production of brilliant photon beams on the fundamental and harmonics down to 1nm. In this paper we present a concept for FLASH2 upgrade, and discuss different advanced options.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB024  
About • paper received ※ 30 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB025 Harmonic Lasing of the European XFEL in the Angstrom Regime undulator, photon, experiment, operation 1740
 
  • E. Schneidmiller, F. Brinker, W. Decking, D. Nölle, M.V. Yurkov, I. Zagorodnov
    DESY, Hamburg, Germany
  • N. Gerasimova, J. Grünert, N.G. Kujala, J. Laksman, Y. Li, J. Liu, Th. Maltezopoulos, I. Petrov, L. Samoylova, S. Serkez, H. Sinn, F. Wolff-Fabris
    EuXFEL, Hamburg, Germany
 
  Harmonic lasing in XFELs is an opportunity to extend the photon energy range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam. Another interesting application is Harmonic Lasing Self-Seeding (HLSS) that allows to improve longitudinal coherence and spectral power of a Self-Amplified Spontaneous Emission (SASE) FEL. This concept was successfully tested at FLASH2 in the range of 4.5 - 15 nm and at PAL XFEL at 1 nm. In this contribution we present recent results from the European XFEL where we successfully demonstrated operation of HLSS FEL at 5.9 A, thus pushing harmonic lasing for the first time into the Angstrom regime.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB025  
About • paper received ※ 09 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB026 Optics & Compression Schemes for a Possible FLASH Upgrade emittance, electron, laser, simulation 1744
 
  • J. Zemella, M. Vogt
    DESY, Hamburg, Germany
 
  The proposed FLASH upgrade will rely on high quality electron beams provided to all undulator beamlines. Here we describe possible modifications to the FLASH lattice and the compression scheme that aim at improving the beam quality and the ability to control critical beam properties along the machine - simultaneously and independently for all beamlines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB026  
About • paper received ※ 11 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB027 Upgrade Plans for FLASH for the Years After 2020 laser, electron, undulator, operation 1748
 
  • M. Vogt, K. Honkavaara, J. Rönsch-Schulenburg, S. Schreiber, J. Zemella
    DESY, Hamburg, Germany
 
  FLASH is a unique superconducting soft X-ray FEL capable of producing up to 8000 photon pulses per second. A substantial upgrade is planned to keep FLASH attractive and competitive. Several upgrade scenarios are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB027  
About • paper received ※ 14 May 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB031 FERMI Configuration for the Echo Enabled Harmonic Generation Experiment laser, electron, experiment, photon 1752
 
  • E. Allaria, D. Castronovo, M. Cautero, I. Cudin, M.B. Danailov, B. Diviacco, L. Giannessi, M. Veronese, M. Zangrando
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The FERMI FEL-2 undulator line, normally operated in the double stage high gain harmonic generation with the fresh bunch (HGHG-FB) has been temporary modified to allow operating the FEL in the Echo Enabled Harmonic Generation (EEHG) scheme. An increase of the dispersion in the delay-line was required together with a replacement of the second stage modulator allowing the electron beam to resonantly interact with a second seed laser. Another critical component of the EEHG setup is a new manipulator installed in the delay-line chicane and hosting additional diagnostic components. In this work we describe in some detail these new components that allowed a successful demonstration of the EEHG at harmonics as high as 101.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB031  
About • paper received ※ 17 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB032 The CompactLight Design Study Project linac, electron, undulator, brightness 1756
 
  • G. D’Auria, S. Di Mitri, R.A. Rochow
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Aicheler
    HIP, University of Helsinki, Finland
  • A.A. Aksoy
    Ankara University, Accelerator Technologies Institute, Golbasi, Turkey
  • D. Alesini, M. Bellaveglia, B. Buonomo, F. Cardelli, M. Croia, M. Diomede, M. Ferrario, A. Gallo, A. Giribono, L. Piersanti, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • R. Apsimon, A. Castilla
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • J.M. Arnesano, F. Bosco, L. Ficcadenti, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • A. Bernhard, J. Gethmann
    KIT, Karlsruhe, Germany
  • G. Burt
    Lancaster University, Lancaster, United Kingdom
  • M. Calvi, T. Schmidt, K. Zhang
    PSI, Villigen PSI, Switzerland
  • H.M. Castaneda Cortes, J.A. Clarke, D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.W. Cross, L. Zhang
    USTRAT/SUPA, Glasgow, United Kingdom
  • G. Dattoli, F. Nguyen, A. Petralia
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • R.T. Dowd, D. Zhu
    AS - ANSTO, Clayton, Australia
  • W.D. Fang
    SINAP, Shanghai, People’s Republic of China
  • A. Faus-Golfe, Y. Han
    LAL, Orsay, France
  • E.N. Gazis, N. Gazis
    National Technical University of Athens, Athens, Greece
  • R. Geometrante, M. Kokole
    KYMA, Trieste, Italy
  • V.A. Goryashko, M. Jacewicz, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • X.J.A. Janssen, J.M.A. Priem
    VDL ETG, Eindhoven, The Netherlands
  • A. Latina, X. Liu, C. Rossi, D. Schulte, S. Stapnes, X.W. Wu, W. Wuensch
    CERN, Geneva, Switzerland
  • O.J. Luiten, P.H.A. Mutsaers, X.F.D. Stragier
    TUE, Eindhoven, The Netherlands
  • J. Marcos, E. Marín, R. Muñoz Horta, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • G. Taylor
    The University of Melbourne, Melbourne, Victoria, Australia
 
  Funding: This project has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreement No 777431
The H2020 CompactLight Project (www. CompactLight.eu) aims at designing the next generation of compact X-rays Free-Electron Lasers, relying on very high gradient accelerating structures (X-band, 12 GHz), the most advanced concepts for bright electron photo injectors, and innovative compact short-period undulators. Compared to existing facilities, the proposed facility will benefit from a lower electron beam energy, due to the enhanced undulators performance, and will be significantly more compact, with a smaller footprint,  as a consequence of the lower energy and the high-gradient X-band structures. In addition, the whole infrastructure will also have a lower electrical power demand as well as lower construction and running costs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB032  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB033 Fixed-gap Undulators for Elettra and FERMI undulator, polarization, electron, operation 1760
 
  • B. Diviacco, R. Bracco, D. Millo
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  In the context of an R&D program on alternative undulator schemes, two fixed-gap, linearly polarised, adjustable-phase undulators (APUs) were built and successfully tested, the first on the FERMI free electron laser, the second on the Elettra storage ring. The latter is now in regular operation for the ALOISA surface science beam line. As a further elaboration on the fixed-gap concept, two elliptically polarised undulators (EPUs) are now being developed for FERMI and for Elettra. We have also started the construction of a double period APU providing an extended tuning range to the TwinMic soft X-Ray microscopy beam line. We present here the main design and construction aspects of the new undulators under development.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB033  
About • paper received ※ 09 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB039 Research of Coherent Edge Radiation Generated by Electron Beams Oscillating Free-Electron Lasers electron, radiation, cavity, experiment 1772
 
  • N. Sei, H. Ogawa
    AIST, Tsukuba, Ibaraki, Japan
  • K. Hayakawa, Y. Hayakawa, K. Nogami, T. Sakai, Y. Sumitomo, Y. Takahashi, T. Tanaka
    LEBRA, Funabashi, Japan
  • H. Ohgaki, H. Zen
    Kyoto University, Kyoto, Japan
 
  Funding: JSPS KAKENHI Grant Number JP16H03912
We have studied far-infrared coherent radiation with an S-band linac at Laboratory for Electron Beam Research and Application (LEBRA) at Nihon University. We have already developed a couple of terahertz-wave sources based on coherent synchrotron radiation and coherent transition radiation*, which have been applied to spectroscopic research**. Moreover, we developed coherent edge radiation (CER) at the downstream bending magnets in the FEL sections. Because the edge radiation has an annular shape distribution characterized by the asymmetric first-order Laguerre-Gaussian mode, the CER can be extracted from an optical cavity of the FEL system without a diffraction loss of the FEL beam***. The root-mean-squared bunch length of the electron beam was evaulated by measuring the CER spectra, which was about the same level as the FEL micropulse width. Although the infrared FELs at LEBRA had a long slippage length, the CER intensity can be a guidepost enhancing the FEL power because of the existence of their correlation. In this presentation, the characteristics of the CER including correlation between the CER and the FEL will be reported.
* N. Sei et al., Jpn. J. Appl. Phys. 56, (2017) 032401.
** N. Sei et al., J. Opt. Soc. Am. B, 31, (2014) 2150.
*** N. Sei et al., Phys. Lett. A in press.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB039  
About • paper received ※ 19 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB040 Development of Coherent Terahertz Wave Sources and Transport Systems at LEBRA Linac linac, electron, radiation, vacuum 1775
 
  • T. Sakai, K. Hayakawa, Y. Hayakawa, K. Nogami, Y. Sumitomo, T. Tanaka
    LEBRA, Funabashi, Japan
  • H. Ogawa, N. Sei
    AIST, Tsukuba, Ibaraki, Japan
 
  Funding: This work was supported by JSPS KAKENHI (Grant-in-Aid for Young Scientists (B)) Grant Number JP16K17539 and JP16H03912.
Development of a 125 MeV S-band electron linac for the generation of Free Electron Laser (FEL), Parametric X-ray Radiation (PXR) and coherent terahertz waves (THz waves) has been underway at LEBRA of Nihon University as a joint research with KEK and National Institute of Advanced Industrial Science and Technology (AIST). The high power coherent transition radiation (CTR), coherent edge radiation (CER) and the coherent synchrotron radiation (CSR) wave sources development has been carried out since 2011 at LEBRA. The transport systems of the each THz wave were installed in the vacuum chamber on the downstream side of the 45 degrees bending magnet of the PXR and FEL beam-line. In particular, a CER of the generated the FEL beam line can also be guided without disturbing the FEL oscillations. Additionally, a part of the mirror of the transport optical system is constructed using Indium Tin Oxide (ITO) mirror with the optimized for the transport of the THz wave. In this report, construction of the THz transport beam lines and the property of the THz lights are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB040  
About • paper received ※ 19 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB041 Simulation of Short-Pulse Generation from a Dynamically Detuned IR-FEL Oscillator and Pulse Stacking at an External Cavity cavity, electron, simulation, radiation 1778
 
  • Y. Sumitomo, Y. Hayakawa, T. Sakai
    LEBRA, Funabashi, Japan
  • R. Hajima
    QST, Tokai, Japan
 
  Funding: Q-LEAP program supported by Ministry of Education, Culture, Sports, Science and Technology, Japan
At the LEBRA facility of Nihon U., we have an IR-FEL oscillator to generate radiations in the range of wavelengths 1-6 um for various experiments. A research program has been established to explore the application of the IR-FEL to generate attosecond UV and X-ray pulses through the high harmonic generation (HHG) in noble gases, where the IR-FEL pulses must have a high-peak power and a short-pulse duration. The property of generated FEL pulse is affected by the cavity length detuning of FEL oscillator as well as the small signal gain and the cavity loss. The operation at a small- or zero-detuning length is necessary to generate a FEL pulse shorter than the bunch length, although it requires a long macro-pulse to reach the saturation. For the short FEL pulse generation within a limited macro-pulse length at the LEBRA LINAC, we apply a dynamical modulation to the electron bunch repetition, that is equivalent to a dynamical detuning of the FEL cavity length. We illustrate the potential performance of the IR-FEL with the dynamical detuning by time-dependent 3D FEL simulations. We also evaluate the enhancement of the FEL pulses by an external cavity stacking for the sake of the HHG application.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB041  
About • paper received ※ 29 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB042 Design Study of Nonlinear Energy Chirp Correction Using Sextupole Magnets at the Soft X-Ray Free-Electron Laser Beamline of SACLA sextupole, electron, linac, cavity 1782
 
  • K. Togawa, T. Hara, H. Tanaka
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  At the x-ray free-electron laser (FEL) facility, SACLA, a soft x-ray FEL beamline (SCSS+) is driven by a dedicated 800-MeV electron accelerator and being operated in parallel with two hard x-ray FEL beamlines. Responding to the demands of short laser pulses from users, a nonlinearity correction system using sextupole magnets is under consideration to obtain shorter electron bunches. Since the frequency of the SCSS+ injector is S-band, the nonlinearity correction of a bunch compression process using a harmonic correction cavity is not so efficient as the SACLA injector, whose frequency of the injector is L-band. Instead of a complex and costly correction cavity system, the sextupole magnets are simply installed in a dispersive section of the first bunch compressor chicane. In this report, we will present the basic design concept and some detail studies of the nonlinear correction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB042  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB046 Second Order Intensity Correlation and Statistical Properties of a Soft X-Ray Free Electron Laser laser, radiation, electron, simulation 1788
 
  • C.L. Li, J.H. Chen, Z.C. Chen, X.T. Wang, H.L. Wu
    SINAP, Shanghai, People’s Republic of China
  • B. Liu, T. Liu
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  High degree of transverse field coherence is one of the unique properties of an FEL compared with a 3rd gen-eration storage ring light source. As a result, the FEL advances the development of innovative research and technology that was not previously feasible. A truly coherent source should be coherent in all orders de-scribed from the intensity correlation functions. In this paper, second order intensity correlation of FEL radia-tion is investigated based on the Hanbury Brown-Twiss intensity correlation method. The statistical properties of radiation produced from SASE was also investigated and compared with the statistical proper-ties of a phase-locked laser. The results show that the statistical properties of a SASE mode behave as a cha-otic source, which is significantly different from the properties of a phase-locked laser beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB046  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB047 Proposal of the Reflection Hard X-Ray Self-Seeding at the SHINE Project undulator, photon, polarization, lattice 1792
 
  • T. Liu, C. Feng
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  FEL self-seeding has been demonstrated a great advantage for the generation of a fully coherent and high brightness X-ray pulse experimentally. Generally, transmission monochromators with single crystal are adopted worldwide, such as LCLS, PAL-XFEL and European-XFEL. Recently, the self-seeding scheme based on a reflection monochromator with a double-crystal is proposed and demonstrated at SACLA successfully. In view of several potential advantages of the reflection type, here we give the proposal of the reflection monochromator based self-seeding and enable the application on the SHINE project. This manuscript is mainly focus on monochromator schemes at SHINE, instead of FEL simulations. We will present considerable schemes based on the specific undulator line.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB047  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB050 The Optical Resonator of CTFEL for Range of 1 to 2 THz GUI, radiation, electron, coupling 1795
 
  • X.J. Shu, Y.H. Dou
    Institute of Applied Physics and Computational Mathematics, People’s Republic of China
 
  A high power THz free electron laser (FEL) facility is under construction at China Academy of Engineering Physics (CTFEL). The radiation frequency of the FEL facility will be tuned in range of 1~3 THz and the average output power is about 10 W. The system mainly consists of a GaAs photoemission DC gun, superconductor accelerator, hybrid wiggler, optical cavity. The first lasing is obtained on Aug. 29, 2017, and CTFEL is operated in range of 2-4THz, but cannot lasing at the frequency below 1.8 THz. The optical resonator of CTFEL must be optimized to ensure lasing in range of 1 to 2 THz.. The lasing strongly depends on the performance of the optical resonator including output efficiency, gain and round-trip loss. The optical resonator consists of metal-coated reflect mirror, the centre-hole output mirror, waveguide. The influence of waveguide on the quality of optical cavity is evaluated by the 3D OSIFEL code. The waveguide size and output hole radius is optimized to different frequencies between 1 THz to 2 THz.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB050  
About • paper received ※ 13 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB052 The Mini-Period Permanent Magnet Staggered Undulator for Compact X-Ray Free Electron Laser undulator, electron, permanent-magnet, radiation 1797
 
  • L.G. Yan, D.R. Deng, J. Wang
    CAEP/IAE, Mianyang, Sichuan, People’s Republic of China
 
  Funding: Work supported by National Natural Science Foundation of China under grant of 11505174, 11505173 and 11605190.
Miniaturization of X-ray free electron laser requires reduction of undulator period length. In this proceeding, a mini-period permanent magnet staggered undulator was proposed, which is free of superconducting solenoid and thus has advantages of easy-manufacture and low-cost. After optimization, it can generate periodic field of peak field 0.71 T with period length 10 mm and pole gap 2 mm, which has been verified on a prototype. Combined with X-band linac, the length of 1 nm XFEL facility using the permanent magnet staggered undulator can be confined within 44 m.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB052  
About • paper received ※ 30 April 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB053 Injector Physics Design at SHINE laser, electron, feedback, emittance 1801
 
  • Z. Wang, M.H. Zhao
    SINAP, Shanghai, People’s Republic of China
  • Q. Gu
    SSRF, Shanghai, People’s Republic of China
  • G.L. Wang
    DICP, Dalian, People’s Republic of China
 
  As a CW x-ray free electron laser facility, SHINE has a high requirement on the electron beam quality in the linac, as well as in the injector. SHINE injector consists of a 162.5 MHz normal conducting VHF gun, a NC 1.3 GHz RF buncher, a one cavity SC cryomodule, an eight cavity SC cryomodule and 3 solenoids along the injector layout. Some beam diagnostic element are inserted in the layout as well. In this paper, we try to introduce the injector physics design at shine.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB053  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB054 The Beam-Based Alignment Simulation and Preliminary Experiment at SXFEL electron, alignment, quadrupole, undulator 1804
 
  • L. Zeng, H.X. Deng, C. Feng, D. Gu, B. Liu, Z.T. Zhao
    SINAP, Shanghai, People’s Republic of China
  • G.L. Wang
    DICP, Dalian, People’s Republic of China
 
  The Shanghai soft X-ray Free-electron Laser facility (SXFEL) is now serving as an experimental platform for fundamental free-electron laser (FEL) principle tests. The machine puts very tight tolerance on the straightness of the electron beam orbit. It is hard to achieve the required trajectory due to the off-axis field of the misaligned quadrupoles and undulator segments especially for the SXFEL driven by low energy linac (840MeV). This tight requirement on electron beam straightness can only be met through the beam-based alignment (BBA) technology which achieved great success at LCLS, PAL-XFEL, European-XFEL and SCALA with high electron beam energies. But there has been no report about satisfactory BBA experiment results on soft X-ray FEL facility driven by relatively low energy linacs (on the order of 2 GeV or less) up to now. Here, we report the simulation results and preparatory experiment progress of the BBA at SXFEL with the method of dispersion-free steering (DFS). The experiment results show some improvements of the electron beam orbit and the phenomenon of the dispersion-free. The entire BBA experiment and a feedback system of electron beam trajectory may also be included.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB054  
About • paper received ※ 18 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB055 First Results of the IVU16 Prototype Undulator Measurements vacuum, undulator, MMI, SRF 1808
 
  • C. Yu, Y.Z. He, X. Hu, Z. Jiang, M.F. Qian, Y.M. Wen, S. Xiang, L. Yin, J.D. Zhang, W. Zhang, Q.G. Zhou
    SINAP, Shanghai, People’s Republic of China
  • H.X. Deng, B. Liu, D. Wang
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • H.F. Wang, Z.T. Zhao
    SSRF, Shanghai, People’s Republic of China
 
  The Shanghai Synchrotron Radiation Facility (SSRF) has developed a 16 mm period length, 4 mm gap, in-vacuum undulator (IVU) that is planned to be installed and tested in the 1.5 GeV SXFEL-SBP beam line. This paper will describe the main parameters of the undulator and the key design choices that have been made. The first undulator prototype was assembled and magnetically tested. First measurements with vacuum chamber will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB055  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB061 Seeded Free-Electron Lasers Driven by a Transverse Tilted Electron Bunch laser, electron, undulator, radiation 1817
 
  • Z. Zhao, Q.K. Jia, H.T. Li
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Funding: Work supported by the China Postdoctoral Science Foundation (No. 2018M642542) and the Fundamental Research Funds for the Central Universities (WK2310000081).
A transverse tilt of the electron bunch is normally unwanted in free-electron laser (FEL) since only a portion of the bunch can contribute to the FEL radiation. However, the recent researches demonstrate that the tilted bunch can be used to generate FEL with some special features. In this work we investigate the generation of a large tilt of the bunch by using a corrugated structure and a dogleg separately. Based on the tilted bunch, the creation of ultra-short pulse and multi-color pulses are demonstrated in high-gain harmonic generation (HGHG) FEL.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB061  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB062 Coherence Time Characterization for Self-Amplified Spontaneous Emission Free-Electron Lasers electron, laser, free-electron-laser, radiation 1820
 
  • G. Zhou, Y. Jiao, J.Q. Wang
    IHEP, Beijing, People’s Republic of China
  • T.O. Raubenheimer, J. Wu
    SLAC, Menlo Park, California, USA
  • C.-Y. Tsai
    HUST, Wuhan, People’s Republic of China
  • C. Yang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  One of the key challenges in scientific researches based on free-electron lasers (FELs) is the characterization of the coherence time of the ultra-fast hard x-ray pulse, which fundamentally influences the interaction process between x-ray and materials. Conventional optical methods, based on autocorrelation, is very difficult to realize due to the lack of mirrors. Here, we experimentally demonstrate a conceptually new coherence time characterization method and a coherence time of 174.7 attoseonds has been measured for the 6.92 keV FEL pulses at Linac Coherent Light Source. In our experiment, a phase shifter is adopted to control the cross-correlation between x-ray and microbunched electrons. This approach provides critical temporal coherence diagnostics for x-ray FELs, and is decoupled from machine parameters, applicable for any photon energy, radiation brightness, repetition rate and FEL pulse duration, etc.
The work was supported by the US Department of Energy (DOE) under contract DE-AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB062  
About • paper received ※ 01 May 2019       paper accepted ※ 28 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB069 Study of FEL Operation Using Collimator without X-band Linearizer in HX Line at PAL-XFEL operation, electron, linac, simulation 1824
 
  • H. Yang, C.-K. Min, I.H. Nam
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: This work is supported by MSIP, Korea.
A Hard X-ray (HX) line in PAL-XFEL consists of an e-gun, a Laser Heater (LH), S-band accelerators, an X-band LINearizer (XLIN), three Bunch Compressors (BC), a dog-leg, and an undulator line. It generates 2.5 - 15-keV FEL with over than 1-mJ pulse energy. The XLIN before BC1 is used for linearizing the energy chirp in the longitudinal phase space and provides the flexibility for FEL optimization and operation. However, it causes the instability of FEL by large jitters and drift because of higher frequency. We study the FEL operation without XLIN. The collimator in the center of BC1 is used removing the slices to cause nonlinear compression. We optimize the FEL by short electron bunch with under 30 fs. In this paper, we present details of the optimizing sequence and performance for the FEL operation without XLIN.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB069  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB070 A Peak Finding Algorithm for FEL Spectra Characterization electron, bunching, laser, background 1827
 
  • M.A. Pop
    MAX IV Laboratory, Lund University, Lund, Sweden
  • E. Allaria
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  We present a software tool aimed at investigating the spectra of photon sources in order to detect any instabilities in the electron beam that have a clear effect on the spectrum. The method has been developed for FERMI@Elettra but with a general approach on the particularities of FEL machines such as a high repetition frequency and significant shot to shot fluctuations. The software has two operating options: a mode, aimed at online usage, which only detects peaks and their corresponding valleys, offering no information about the peaks themselves; and a more comprehensive mode that fits peak functions (Gaussian, Lorentzian etc…) to the spectrum based on initial guesses of the fitting parameters. The algorithm can provide a collection of simple but valuable variables such as number of peaks, peak separation and ratio between peak heights, as well as more specialized variables like peak width statistics and decomposition of the raw spectrum in basic components.
Project done in collaboration with FERMI@Elettra
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB070  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB071 Considerations on Implementing EEHG with a Strong Linear Chirp electron, bunching, linac, radiation 1830
 
  • M.A. Pop, S. Werin
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  As the ECHO enabled harmonic generation (EEHG) scheme draws such intense focus from the FEL community, we conduct simulations to evaluate the challenges of implementing said scheme in different FEL layouts. Nonlinear processes such as this require extensive simulations to harmonize all system specific properties like seed lasers and electron beam properties. Along with optimizing the original EEHG scheme* one can consider, for example, altering the seed laser pulse to optimize the bunching for a machine specific chirp. We study the EEHG as a possible seeding method aimed at increasing coherence of the photon beam for the prospective SXL FEL beamline at MAXIV. The particular chirp of the electron beam through the MAXIV LINAC generates some specific requirements in implementing EEHG but may also offer an opportunity for exotic operation modes of this FEL.
* Xiang D. and Stupakov G. Echo-enabled harmonic generation free electron laser 10.1103/PhysRevSTAB.12.030702
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB071  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB072 Compact APPLE X for Future SXL FEL and 3 GeV Ring at MAX IV Laboratory undulator, polarization, photon, vacuum 1833
 
  • H. Tarawneh, P. N’gotta, L.K. Roslund, A. Thiel, K. Åhnberg
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  An overview of the design of compact elliptically polarizing undulator with small round magnetic gap to provide full polarization control of synchrotron radiation in a more cost effective manner and consuming less built in space than the state of the art devices. This type of undulator is meant as source for the potential future Soft X-ray (SXL) FEL beamline using the linear accelerator at MAX IV. In addition, it offers new capabilities for future beamlines at the 3 GeV ring to use full polarization control to photon energies using the fundamental harmonic which are not attainable with today’s technology of the out-of-vacuum insertion devices at 3 GeV beam energy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB072  
About • paper received ※ 30 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB074 Start-to-End Simulations of the Compact Light Project Based on an S-Band Injector and an X-Band LINAC lattice, linac, cavity, electron 1836
 
  • E. Marín, R. Muñoz Horta, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • A.A. Aksoy
    Ankara University, Accelerator Technologies Institute, Golbasi, Turkey
  • S. Di Mitri
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • A. Latina
    CERN, Geneva, Switzerland
  • S.B. van der Geer
    Pulsar Physics, Eindhoven, The Netherlands
 
  Funding: This project has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreement No 777431
In this paper we report the start-to-end simulation results of one of the options under consideration for the CompactLight Project (XLS). The XLS is a hard X-ray Free Electron Laser under design, using the latest concepts for bright electron photo injectors, very high-gradient X-band structures, and innovative short-period undulators. Presently there exist various tracking codes to conduct the design process. Therefore identifying the most convenient code is of notable importance. This paper compares the tracking codes, Placet and General Particle Tracer, using the XLS lattice based on a S and X-band Injector. The calculation results in terms of beam quality and tracking performance of a full 6-D simulation are presented.
[*] The CompactLight Design Study Project, IPAC2019 proceedings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB074  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB075 Higher Order Mode Spectra Study of 3.9 GHz Superconducting Radio Frequency Cavities for the European XFEL cavity, HOM, simulation, electron 1840
 
  • L. Shi, S. Reiche
    PSI, Villigen PSI, Switzerland
  • N. Baboi, A.A. Sulimov, E. Vogel, T. Wamsat
    DESY, Hamburg, Germany
  • R.M. Jones, N.Y. Joshi
    UMAN, Manchester, United Kingdom
  • P. Pierini
    ESS, Lund, Sweden
 
  Funding: The work is part of EuCARD2 and was partly funded by the European Commission, GA 312453.
It is important to verify both by simulation and experiments the wakefields in superconducting radio frequency (SRF) cavities, which can degrade the electron beam quality considerably or impose excessive heat load if left undamped. In this paper, we investigate the Higher Order Mode (HOM) spectra of the 3.9 GHz SRF cavities, which are assembled in a cryogenic module and are used to linearize the longitudinal phase space of the electron beam in the injector of the European XFEL. The HOM spectra are significantly different from the ones from a single cavity due to the coupling of the modes amongst cavities. The measurements not only provide direct input for the beam dynamics studies but also for the beam instrumentation utilizing these modes. The mode spectra are also investigated with a number of numerical simulations and the comparison with measurements shows favorable agreement.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB075  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB076 Free Electron Laser Driven by a High-Energy High-Current Energy-Recovery Linac electron, radiation, linac, undulator 1844
 
  • F. Zimmermann
    CERN, Geneva, Switzerland
  • H. Aksakal
    KMSIU, Onikisubat / Kahramanmaras, Turkey
  • A.A. Aksoy
    Ankara University, Accelerator Technologies Institute, Golbasi, Turkey
  • Z. Nergiz
    Nigde University, Nigde University Science & Art Faculty, Nigde, Turkey
 
  Funding: This work was supported by the European Commission under the HORIZON 2020 project ARIES, grant agreement no. 730871.
The proposed electron-hadron collider LHeC, based on an energy recovery linac, employs an electron beam of 20 mA current at an energy of tens of GeV. This electron beam could also be used to drive a free electron laser (FEL) operating at sub-Angstrom wavelengths. Here we demonstrate that such FEL would have the potential to provide orders of magnitude higher peak power, peak brilliance and average brilliance, than any other FEL, either existing or proposed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB076  
About • paper received ※ 10 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB086 Four X-ray Pulses within 10 ns at LCLS laser, experiment, electron, gun 1859
 
  • F.-J. Decker, W.S. Colocho, S.H. Glenzer, A.A. Lutman, A. Miahnahri, D.F. Ratner, J.C. Sheppard, S. Vetter
    SLAC, Menlo Park, California, USA
 
  The X-Ray FEL at SLAC or LCLS delivers typically one bunch at the time. Different schemes of two bunches have been developed: Two bucket, Twin bunch, split undulator, and fresh slice. Here we discuss a four bunch or even eight bunch setup, separated by 2 RF buckets or 0.7 ns. . The demand comes from MEC (Matter in Extreme Conditions) experiments, where high-power laser beams with Joule-class energies create impulsive pressure waves compressing materials on time scales of the order of ns. Eight snapshots for a single experiment will allow measuring the compression history, structural phase transitions into new high-pressure material states, and have the potential to resolve the transition kinetics time scales.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB086  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB088 Generation of High Peak Power Hard X-Rays at LCLS-II with Double Bunch Self-seeding electron, photon, laser, undulator 1863
 
  • A. Halavanau, F.-J. Decker, Y. Ding, C. Emma, Z. Huang, J. Krzywiński, A.A. Lutman, G. Marcus, C. Pellegrini, D. Zhu
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the U.S. Department of Energy Contract No. DE-AC02-76SF00515.
We propose to use existing LCLS copper S-band linac double bunch infrastructure to significantly improve LCLS-II hard X-ray performance. In our setup, we use the first bunch to generate a strong seeding X-ray signal, and the second bunch, initially traveling off-axis, to interact with the seed in the amplifier undulator and generate a near TW, 15 fs duration X-ray pulse in the 4 to 8 keV photon energy range. We investigate, via numerical simulations, the required transverse beam dynamics and the four crystals X-ray monochromator to be added to the existing LCLS-II beamline and discuss the final properties of the hard X-ray pulses and their potential application in high intensity, high-field physics experiments, including QED above the Schwinger critical field.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB088  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB090 Preliminary Considerations of Atomic Inner-Shell X-Ray Laser for Self-Seeding at LCLS-II photon, simulation, radiation, experiment 1871
 
  • A. Halavanau, C. Pellegrini, J. Wu
    SLAC, Menlo Park, California, USA
  • A.I. Benediktovitch
    EuXFEL, Hamburg, Germany
  • N. Rohringer
    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
 
  Funding: This work was supported by the U.S. Department of Energy Contract No. DE-AC02-76SF00515.
The atomic inner-shell X-ray lasing, induced by the irradiation of focused XFEL SASE pulses, was demonstrated in gases, liquid jets and solids. In this proceeding, we discuss the possible use of this concept in self-seeding scheme at LCLS-II. We provide a preliminary study of different lasing media and corresponding SASE XFEL parameters. For the case of noble gas inner-shell X-ray laser, we study the requirements for gas pressure and XFEL pulse focusing. Finally, we discuss possible designs of this system and its advantages in LCLS-II operations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB090  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB091 Study of XFEL Third Harmonic Radiation at LCLS undulator, radiation, experiment, bunching 1875
 
  • C. Emma, M.W. Guetg, A. Halavanau, A.A. Lutman, G. Marcus, T.J. Maxwell, C. Pellegrini
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the U.S. Department of Energy Contract No. DE-AC02-76SF00515.
In this paper, we focus on characterization of the nonlinear third harmonic radiation properties at Linac Coherent Light Source (LCLS). In addition, we experimentally perform third harmonic self-seeding, using diamond crystal attenuator in the hard X-ray self-seeding chicane. We discuss warm beam effects in such scheme, justifying recently proposed two bunch configuration for harmonic lasing.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB091  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB096 Test of an X-ray Cavity using Double-Bunches from the LCLS Cu-Linac cavity, electron, laser, free-electron-laser 1887
 
  • K.-J. Kim, L. Assoufid, R.R. Lindberg, X. Shi, D. Shu, Yu. Shvyd’ko, M. White
    ANL, Argonne, Illinois, USA
  • F.-J. Decker, Z. Huang, G. Marcus, T.O. Raubenheimer, D. Zhu
    SLAC, Menlo Park, California, USA
 
  Funding: This work is supported by U.S. DOE, Office of Science, Office of BES, under Contract No. DE-AC02-06CH11357 (ANL) and DE-AC02-76SF00515 (SLAC).
We discuss a proposal to test the operation of an X-ray cavity consisting of Bragg reflectors. The test will con-stitute a major step demonstrating the feasibility of either an X-ray regenerative amplifier FEL or an X-ray FEL Oscillator. These cavity-based X-ray FELs will provide the full temporal coherence lacking in the SA-SE FELs. An X-ray cavity of rectangular path will be constructed around the first seven LCLS-II undulator units. The Cu-linac will produce a pair of electron bunches separated by the cavity-round-trip distance during each linac cycle. The X-ray pulse produced by the first bunch is deflected into the cavity and returns to the undulator where it is amplified due to the presence of the second bunch. The key challenges are: the preci-sion of the cavity mechanical construction, the quality of the diamond crystals, and the electron beam stability. When the LCLS-II super-conducting linac becomes available, the cavity can then be used for high-repetition rate studies of the X-ray RAFEL and XFELO concepts.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB096  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB103 The FHI FEL Upgrade Design undulator, cavity, dipole, operation 1903
 
  • A.M.M. Todd
    AMMTodd Consulting, Princeton Junction, New Jersey, USA
  • W.B. Colson
    NPS, Monterey, California, USA
  • M. De Pas, S. Gewinner, H. Junkes, G. Meijer, W. Schöllkopf, G. von Helden
    FHI, Berlin, Germany
  • S.C. Gottschalk
    STI Magnetics LLC, Woodinville, USA
  • J. Rathke, T. Schultheiss
    AES, Medford, New York, USA
  • L.M. Young
    LMY Technology, Lincolnton, Georgia, USA
 
  Since coming on-line in November 2013, the Fritz-Haber-Institut (FHI) der Max-Planck-Gesellschaft (MPG) Free-Electron Laser (FEL) has provided intense, tunable infrared radiation to FHI user groups. It has enabled experiments in diverse fields ranging from bio-molecular spectroscopy to studies of clusters and nanoparticles, nonlinear solid-state spectroscopy, and surface science, resulting in 50 peer-reviewed publications so far. The MPG has now funded a significant upgrade to the original FHI FEL. A second short Rayleigh range undulator FEL beamline is being added that will permit lasing from < 5 microns to > 160 microns. Additionally, a 500 MHz kicker cavity will permit simultaneous two-color operation of the FEL from both FEL beamlines over an optical range of 5 to 50 microns by deflecting alternate 1 GHz pulses into each of the two undulators. We will describe the upgraded FHI FEL physics and engineering design and present the plans for two-color FEL operations in November 2020.
A.M.M. Todd, L.M. Young, J.W Rathke, W.B. Colson, T.J Schultheiss and S. Gottschalk are Consultants to the Fritz-Haber-Institut
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB103  
About • paper received ※ 02 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB108 Mechanical Design of a Dielectric Wakefield Dechirper System for CLARA vacuum, wakefield, electron, alignment 1912
 
  • M. Colling, D.J. Dunning, B.D. Fell, T.H. Pacey, Y.M. Saveliev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  STFC Daresbury Laboratory are developing a compact electron beam energy dechirper system, based on dielectric wakefield structure, for the on-site electron accelerator CLARA (Compact Linear Accelerator for Research and Applications). CLARA will be an experimental free electron laser (FEL) facility operating at 250MeV and will be a test bed for a variety of novel FEL schemes. The dechirper dielectric quartz plates will induce wakefields within the structure which can remove the beam chirp that is initially introduced to compress the electron bunch longitudinally. Removing or adjusting the amount of chirp enables researchers to reduce or adjust the bunch energy/momentum spread, expanding the FEL capabilities. The attachment and alignment of the quartz plates present numerous mechanical design challenges that require high precision manufacturing and quartz plate positioning via fiducialisation. This paper will review the dechirper specifications, the chosen design solutions, measured mechanical performance, and the expected effect of the dechirper on CLARA FEL operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB108  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS046 Commissioning of a Compact THz Source Based on FEL linac, undulator, cavity, radiation 2030
 
  • Y.J. Pei, G. Feng, X.Y. He, Y. Hong, D. Jia, P. Lu, S. Lu, L. Shang, B.G. Sun, Zh. X. Tang, W. Wang, X.Q. Wang, W. Wei
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • L. Cao, Q.S. Chen, Q. Fu, T. Hu, P. Tan, Y.Q. Xiong
    HUST, Wuhan, People’s Republic of China
  • G. Huang
    IMP/CAS, Lanzhou, People’s Republic of China
  • L.G. Shen, F. Zhang
    USTC/PMPI, Hefei, Anhui, People’s Republic of China
 
  The layout of the THz source based on FEL was de-scribed in this paper. The THz source was based on a FEL which was composed of a compact 8-14MeV LINAC, undulator, optical resonance, THz wave measurement system and so on. The facility was designed in 2013 and the typical running parameter got in 2017 were as the following: energy is of 12.7MeV, energy spread is of 0.3%, macro-pulse is of 4 μs, pulse length of micro-pulse is of 6ps, emittance is of 24 mm.mrad. After that the ma-chine was commissioning for production THz radiation. In November 2018, the THz wave was test and got THz wave signal, the spectrum was also got. This year, we plan to measure the output power of the THz source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS046  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS077 Design of a High Gradient THz-Driven Electron Gun electron, gun, acceleration, experiment 2098
 
  • S.M. Lewis, V.A. Dolgashev, A.A. Haase, E.A. Nanni, M. A. K. Othman, A.V. Sy, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • D. Kim, E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This work was supported by Department of Energy contract DE-AC02-76SF00515. This work was also supported by NSF grants PHY-1734015.
We present the design of a high-gradient electron gun. The goal of this gun is to generate relativistic electrons using GV/m accelerating fields. The initial design is a standing-wave field-emission gun operating in the pi-mode with a cavity frequency of 110.08 GHz. A pulsed 110 GHz gyrotron oscillator will be used to drive the structure with power coupled in through a TM01 circular waveguide mode. The gun is machined in two halves which are bonded. This prototype will be used to characterize the electron beam and study RF breakdown at 110 GHz.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS077  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS078 Coherent Electron Cooling (CeC) Experiment at RHIC: Status and Plans electron, experiment, SRF, simulation 2101
 
  • V. Litvinenko, K. Mihara
    Stony Brook University, Stony Brook, USA
  • Z. Altinbas, J.C. Brutus, A. Di Lieto, D.M. Gassner, T. Hayes, P. Inacker, J.P. Jamilkowski, Y.C. Jing, R. Kellermann, J. Ma, G.J. Mahler, M. Mapes, R.J. Michnoff, T.A. Miller, M.G. Minty, G. Narayan, M.C. Paniccia, D. Phillips, I. Pinayev, S.K. Seberg, F. Severino, J. Skaritka, L. Smart, K.S. Smith, Z. Sorrell, R. Than, J.E. Tuozzolo, E. Wang, G. Wang, Y.H. Wu, B. P. Xiao, T. Xin, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
  • K. Shih
    SBU, Stony Brook, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and NSF Grant No. PHY-141525
We will present currents status of the CeC experiment at RHIC and discuss plans for future. Special focus will be given to unexpected experimental results obtained during RHIC Run 18 and discovery of a previously unknown type of microwave instability. We called this new phenomenon micro-bunching Plasma Cascade Instability (PCI). Our plan for future experiments includes suppressing this instability in the CeC accelerator and using it as a broad-band amplifier in the CeC system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS078  
About • paper received ※ 19 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS085 Design Study of 3.6-cell C-band Photocathode Electron Gun gun, emittance, simulation, cathode 2121
 
  • W. Fang, Z.T. Zhao
    SSRF, Shanghai, People’s Republic of China
  • L. Wang
    University of Chinese Academy of Sciences, Beijing, People’s Republic of China
  • L. Wang
    SINAP, Shanghai, People’s Republic of China
 
  A C-band photocathode injector composed of a 3.6-cell C-band photocathode RF gun and two 1.8-meter C-band accelerating structures is proposed. The injector is a low emittance electron source for Free Electron Lasers (FEL) and other compact light sources. The RF structure of the cavities is designed with 2D SUPERFISH simulation. The Beam dynamic study in ASTRA helps rectify the 2D RF simulation. To feed the cavities, a design of extra coaxial coupler with RF gun structure is presented. With compact focusing solenoids, for 0.25nC bunch charge, the final energy can reach 6.9 MeV energy and the 95% emittance can be as low as 0.23 mm mrad (95%). All the details of RF design and beam dynamics studies are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS085  
About • paper received ※ 15 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS118 LASA Activities on Surface Treatment of Low-beta Elliptical Cavities cavity, SRF, cathode, superconductivity 2207
 
  • M. Bertucci, A. Bignami, A. Bosotti, M. Chiodini, A. D’Ambros, P. Michelato, L. Monaco, R. Paparella, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
  • D. Rizzetto, M. Rizzi
    Ettore Zanon S.p.A., Schio, Italy
  • L. Sagliano
    ESS, Lund, Sweden
 
  This paper describes the efforts made by LASA on the development of surface treatments for low-beta elliptical cavities, for the current series production of ESS and the foreseen series production of PIP-II. The traditional techniques of buffered chemical polishing and electropolishing are here discussed taking into account the industrial environment, the practical issues due to the size and geometry of such cavities and according to the required qualification values for quality factor and accelerating gradient.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS118  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXPLM1 XFEL Operational Flexibility due to the Dechirper System electron, undulator, controls, laser 2219
 
  • A.A. Lutman, K.L.F. Bane, Y. Ding, C. Emma, M.W. Guetg, E. Hemsing, Z. Huang, J. Krzywiński, J.P. MacArthur, G. Marcus, A. Marinelli, T.J. Maxwell, A. Novokhatski
    SLAC, Menlo Park, California, USA
  • G. Guo
    Stanford University, Stanford, California, USA
 
  Funding: U.S.Department of Energy, Office of Science, Laboratory Directed Research and Development (LDRD) program at SLAC National Accelerator Laboratory, under Contract No. DE-AC02-76SF00515.
The RadiaBeam/SLAC dechirper was installed to demonstrate the concept of using wakefields from a corrugated structure to change the energy profile along an electron bunch. Since installation, the system has allowed a large number of additional XFEL operating modes including fresh-slice two-color or three color operation, fresh-slice seeding, passive streaking, etc. This talk will discuss the results from using the dechirper system and possible implementation issues related to the high-rate LCLS-II.
Lutman, A. A. et al. Nat. Photon. 10, 745-750 (2016).; Nat. Photon. 10, 695-696 (2016); other papers in submission.
 
slides icon Slides WEXPLM1 [5.744 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEXPLM1  
About • paper received ※ 10 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXXPLM1 Amplified Emission of a Soft-X Ray Free-Electron Laser Based on Echo-Enabled Harmonic Generation laser, electron, experiment, free-electron-laser 2230
 
  • E. Allaria, L. Badano, G. De Ninno, S. Di Mitri, B. Diviacco, W.M. Fawley, N.S. Mirian, G. Penco, P. Rebernik Ribič, S. Spampinati, C. Spezzani, M. Trovò
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • G. De Ninno
    University of Nova Gorica, Nova Gorica, Slovenia
  • E. Ferrari, E. Prat
    PSI, Villigen PSI, Switzerland
  • D. Garzella
    CEA, Gif-sur-Yvette, France
  • V. Grattoni
    DESY, Hamburg, Germany
  • E. Hemsing
    SLAC, Menlo Park, California, USA
  • M.A. Pop
    MAX IV Laboratory, Lund University, Lund, Sweden
  • E. Roussel
    PhLAM/CERLA, Villeneuve d’Ascq, France
  • D. Xiang
    Shanghai Jiao Tong University, Shanghai, People’s Republic of China
 
  We report the first evidence of substantial gain in a soft-X ray Free Electron Laser (FEL) based on Echo-Enabled Harmonic Generation (EEHG). The experiment was focused on harmonics 36 (~7.3nm) and 45 (5.8 nm) and clearly demonstrated the expected EEHG capability of generating powerful and coherent FEL pulses, with strongly reduced sensitivity to electron-beam fluctuations. The experiment was carried out at FERMI, the seeded FEL user facility at Elettra-Sincrotrone Trieste.  
slides icon Slides WEXXPLM1 [11.410 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEXXPLM1  
About • paper received ※ 17 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYYPLS2 First Experimental Measurements of the Caustic Nature of Trajectories in Bunch Compressors linac, electron, experiment, sextupole 2270
 
  • T.K. Charles
    The University of Melbourne, Melbourne, Victoria, Australia
  • J. Björklund Svensson
    Lund University, Lund, Sweden
  • A. Latina
    CERN, Geneva, Switzerland
  • S. Thorin
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  Theoretical advancements describing density perturbations in accelerated charge particle beams, known as caustics, has been recently developed * This proceeding describes the first experimental measurements of the caustic nature of charged particle trajectories in a particle accelerator. Caustics by their nature are discontinuities that result from small continuous perturbations of an input. Under certain conditions, small density modulations will reliably produce striking changes in the corresponding output current profile. These current modulations can shift alone the bunch with varying higher-order longitudinal dispersion. The MAX IV linac double-bend achromats provide the perfect test bed for experimentally verifying how the caustic lines evolve. The natural amplification of small perturbations makes caustics an attractive diagnostic tool, and effective tool for characterise the bunch compressors. This approach also allows us to modify and improve the longitudinal charge profile, removing current spikes or creating tailor shaped current profiles.
* T.K.Charles et. al. Phys. Rev. Accel. Beams 19, 104402
 
slides icon Slides WEYYPLS2 [5.402 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEYYPLS2  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZPLS1 Control of Laser Plasma Accelerated Electrons: A Route for Compact Free Electron Lasers electron, laser, undulator, radiation 2280
 
  • M.-E. Couprie, T. André, F. Blache, F. Bouvet, F. Briquez, Y. Dietrich, J.P. Duval, M. El Ajjouri, A. Ghaith, C. Herbeaux, N. Hubert, C.A. Kitegi, M. Labat, N. Leclercq, A. Lestrade, A. Loulergue, O. Marcouillé, F. Marteau, D. Oumbarek Espinos, P. Rommeluère, M. Sebdaoui, K.T. Tavakoli, M. Valléau
    SOLEIL, Gif-sur-Yvette, France
  • I.A. Andriyash, S. Corde, J. Gautier, J.-P. Goddet, O. S. Kononenko, G. Lambert, K. Ta Phuoc, A. Tafzi, C. Thaury
    LOA, Palaiseau, France
  • S. Bielawski, C. Evain, E. Roussel, C. Szwaj
    PhLAM/CERLA, Villeneuve d’Ascq, France
  • V. Malka
    Weizmann Institute of Science, Physics, Rehovot, Israel
 
  The recent spectacular development of laser plasma ac- celerators that now can deliver GeV electron beams in an extremelyshortdistancemakesthemverypromising. Ap- plications for light sources based on undulator radiation and free electron laser appear as an intermediate step to move from an acceleration concept to an accelerator qual- ification. However, the presently achieved divergence and energy spread require some electron beam manipulations. The COXINEL test line was designed for enabling Free Elec- tron Laser operation with baseline reference parameters. It comprises variable permanent magnet quadrupoles for di- vergence handling, a magnetic chicane for electron energy sorting, a second set of quadrupole for chromatic focusing and an undulator for synchrotron radiation emission and/or free electron laser gain medium. The transport along the line is controlled [1]. The synchrotron radiation emitted by the undulator radiation is studied under different conditions of detection (CCD camera, spectrometer), electron beam manipulation and undulator parameters. These observations pave the way towards Laser Plasma Acceleration based Free Electron Laser.

[1] T. André et al., Control of laser plasma accelerated electrons for light sources, accepted in Nature Comm.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEZPLS1  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP049 Simulations of Beam Shaping for Dark Matter Experiments at LCLS-II electron, experiment, optics, quadrupole 2443
 
  • Y.M. Nosochkov, C. Hast, T.W. Markiewicz, L.Y. Nicolas, T.O. Raubenheimer, M. Santana-Leitner
    SLAC, Menlo Park, California, USA
 
  Funding: * Work supported by the U.S. DOE Contract DE-AC02-76SF00515.
A new transfer beamline, called S30XL, and an experimental facility are proposed to be built at SLAC, taking advantage of the LCLS-II free electron laser (FEL) under construction. The S30XL will operate parasitically to the FEL by extracting the unused low intensity 4-GeV LCLS-II bunches into the existing A-line and the End Station-A (ESA). This provides a unique capability of multi-GeV nearly continuous electron beam for a variety of HEP experiments, in particular the dark matter search experiments. The latter require a very low beam current ranging from pA to micro-A, as well as a large beam spot at the detector. The necessary beam shaping will be performed using spoilers and collimators in the A-line, and by optimizing the optics. FLUKA and elegant codes are used to generate and track the beam into the ESA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP049  
About • paper received ※ 16 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW014 A Non-Invasive THz Spectrometer for Bunch Length Characterization at European XFEL electron, radiation, diagnostics, factory 2495
 
  • N.M. Lockmann, C. Gerth, P. Peier, B. Schmidt, S. Wesch
    DESY, Hamburg, Germany
 
  The European X-ray Free-Electron Laser provides one of the most powerful X-ray laser pulses to a wide range of experiments. These experiments strongly benefit from the exact knowledge of the electron bunch current profile and demand for stable and shortest-possible pulse lengths. During the 2018 summer shutdown, the 4-staged grating spectrometer CRISP* has been installed at a diffraction radiation (DR) beamline just upstream of the undulator beamline switchyard. The DR at final electron beam energies of up to 17.5 GeV enables non-invasive bunch length characterization based on form factor measurements down to a few micrometers. Fast detectors and electronics allow for the characterization of the whole bunch train with repetition rates above 1 MHz. This contribution will present commissioning results of the THz beamline as well as first measured form factors and reconstructed electron current profiles.
* S. Wesch et al., Nuclear Instruments and Methods in Physics Research Section A 665 (2011) pp. 40-47
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW014  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW055 Beam Longitudinal Distribution Reconstructed by GESPAR Method at CAEP THz FEL radiation, electron, laser, experiment 2602
 
  • D. Wu, T.H. He, P. Li, J. Liu, X. Luo, Q. Pan, L.J. Shan, X. Shen, J. Wang, D.X. Xiao, L.G. Yan, P. Zhang, K. Zhou
    CAEP/IAE, Mianyang, Sichuan, People’s Republic of China
 
  Funding: Work supported by National Natural Science Foundation of China with grant (11505173, 11505174, 11575264, and 11605190)
Coherent radiation can be used to measure the longitudinal distribution of the electron beam bunch of any length, as long as the coherent radiation spectrum can be measured. In many cases, the Kramers-Krönig relationship is used to reconstruct the temporal distribution of the beam from the coherent radiation spectrum. However, the extrapolation of the low frequency will introduce the uncertainty of the reconstruction. In this paper, GrEedy Sparse PhAse Retrieval (GESPAR) method was used to reconstruct the beam longitudinal distribution measured by coherent transition radiation on the THz FEL facility of China Academy of Engineering Physics. The results indicate that the GESPAR method works well for the complex and ultrashort distribution. It will be an effective tool to accurately measure the femtosecond bunch temporal structure.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW055  
About • paper received ※ 14 May 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW057 Design of Stripline BPM for the SHINE Project simulation, experiment, diagnostics, beam-diagnostic 2605
 
  • T. Wu, B. Gao, L.W. Lai, Y.B. Leng
    SSRF, Shanghai, People’s Republic of China
  • S.S. Cao, J. Chen, Y.M. Zhou
    SINAP, Shanghai, People’s Republic of China
 
  As a under-constrution forth-generation light source in China, SHINE(Shanghai HIgh repetition rate XFEL aNd Extreme light facility) is expected to play an important role in basic scientific research in the field of materials and medicine. However, the performance of FEL depends critically on the completeness and quality of their beam diagnostic systems. Since the SHINE project will operate with bunch charge at 100pC, which is only one-quarter of that in the SXFEL, the measurement accuracy requirements for SBPM will increase significantly. On the other hand, the bunch repetition frequency of SHINE reached 1MHz, which shortened the threshold for measuring dead time. Fitting the requirement, the passband and the sampling rate design of stripline BPM is upgraded for the SHINE project. The final design was simulated using the data on the SXFEL, and the some inspiring results have been made.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW057  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW060 Theoretical Analysis and Experimental Design of Terahertz Single-Pulse Picking based on Plasma Mirror plasma, laser, electron, target 2613
 
  • S.Y. Zhao, M. Li, P. Li, J. Wang, D. Wu, X. Yang
    CAEP/IAE, Mianyang, Sichuan, People’s Republic of China
 
  Funding: Work supported by National Natural Science Foundation of China with grant (11505173, 11505174, 11575264, and 11605190)
China Academy of Engineering Physics terahertz free electron laser (CTFEL) facility needs a terahertz switch for picking of single-pulse, which can facilitate the experiments that require high peak power but low average power. At present, many researches mainly focus on resonant tunneling effects, tunable metamaterials such as graphene and vanadium dioxide, nonlinear modulation based on the principle of all-optical switching, etc. However, the frequency range of these terahertz switches is generally not applicable to CTFEL(1.87-2.3THz). In this paper, self-induced plasma switching technology is applied to CTFEL. Single-pulse is reflected by a dense plasma in a Ge, Al or fused quartz slab that is photoexcited by laser system. Theoretical analysis and numerical simulation demonstrate the feasibility of the experiment. In addition, schematic layout of the experiment setup and specifications of the major instruments are given.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW060  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW068 Measurements of Beam Parameters at the Last Track of the ERL-Based Novosibirsk Free Electron Laser radiation, electron, diagnostics, undulator 2632
 
  • V.M. Borin, Ya.V. Getmanov, A.S. Matveev, O.I. Meshkov, O.A. Shevchenko, N.A. Vinokurov
    BINP SB RAS, Novosibirsk, Russia
  • V.L. Dorokhov
    BINP, Novosibirsk, Russia
  • Ya.V. Getmanov
    NSU, Novosibirsk, Russia
  • A.I. Mickailov
    Budker INP & NSU, Novosibirsk, Russia
 
  Parameters and dynamics of the electron beam of the Novosibirsk infrared Free Electron Laser are studied. The Novosibirsk FEL is based on the multi-turn energy recovery linac (ERL). The ERL operate in CW mode with an average beam current about 5 mA. Therefore non-destructive beam diagnostic methods are preferable. The beam energy at the last track of the ERL is 42 MeV. As a result, significant part of synchrotron radiation from bending magnets is in the visible range and can be used for diagnostic purposes. The transverse beam dimensions were measured with the optical diagnostics before (transition radiation) and after (synchrotron radiation from a bending magnet) the undulator applied for generation of middle-infrared coherent radiation. The obtained data are used to calculate the beam energy distribution and emittance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW068  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW080 Design of Resonant Stripline BPM for an IR-FEL Project at NSRL dipole, electron, vacuum, emittance 2665
 
  • X.Y. Liu, B.G. Sun
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • M. Bopp, M.M. Dehler, X.Y. Liu, A. Scherer
    PSI, Villigen PSI, Switzerland
 
  Funding: Work supported by the National Science Foundation of China (11575181, 21327901, 11705203); X. Y. Liu was supported by the China Scholarship Council for a 2-year study at PSI (Grant No. 201706340057).
This paper presents the design of a 476MHz resonant stripline beam position monitor (BPM) for an IR-FEL machine at NSRL. This type of BPM was developed based on stripline BPM by moving the coupling feedthrough closer to the short end downstream. This modification introduces a resonance that gives this BPM a better capability to detect lower beam currents compared to broadband devices like button and stripline BPM. Meanwhile, the change is small enough to use the same type of electronics [1-3]. In the following sections, the basic principle, nonlinear effect, sensitivity, the filtered sum and difference signals, and the mechanical design of this BPM will be mainly discussed.
Email address: xiaoyu.liu@psi.ch
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW080  
About • paper received ※ 10 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB021 Commissioning of S-band Cavity Test Facility at Elettra for Conditioning of High Gradient Structures for the Fermi Linac Upgrade cavity, LLRF, hardware, linac 2846
 
  • N. Shafqat, L. Giannessi, C. Masciovecchio, M. Milloch, C. Serpico, M. Svandrlik, M. Trovò
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Bopp, R. Zennaro
    PSI, Villigen PSI, Switzerland
  • T.G. Lucas
    The University of Melbourne, Melbourne, Victoria, Australia
 
  FERMI is the seeded Free Electron Laser (FEL) user facility at Elettra laboratory in Trieste, operating in the VUV to soft X-rays spectral range. In order to extend the FEL spectral range to shorter wavelengths, a feasibility study for increasing the Linac energy from 1.5 GeV to 1.8 GeV is actually going on. A short prototype of a new High Gradient (HG) S-band accelerating structure has been built in collaboration with Paul Scherrer Institute (PSI). The new structures are intended to replace the present Backward Travelling Wave (BTW) sections and tailored to be operated at a gradient of 30 MV/m. For RF conditioning and high power testing of prototype, a Cavity Test Facility (CTF) is commissioned at FERMI. The test facility is equipped with RF pulse compressor system and a dedicated diagnostic for breakdown rate (BDR) measurements and events localization. In this paper we present in detail cavity test facility of FERMI and high power testing of the first prototype.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB021  
About • paper received ※ 08 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB042 High Power Test of the First C-band Spherical Pulse Compressor Prototype GUI, cavity, electron, linac 2896
 
  • Z.B. Li
    SINAP, Shanghai, People’s Republic of China
  • W. Fang, Q. Gu, X.X. Huang, J.H. Tan, Z.T. Zhao
    SSRF, Shanghai, People’s Republic of China
 
  Funding: National Natural Science Foundation of China (No. 11675249)
Recently, a new C-band (5712 MHz) compact spherical radio frequency (RF) pulse compressor was designed and tested for Shanghai Soft X-ray Free Electron Laser Facili-ty (SXFEL). This pulse compressor utilizes one high Q0 spherical RF resonant cavity that works with two TE1, 1,3 modes and a dual-mode polarized coupler. The peak power multiply factor is 6.1 and average power gain 3.8 in theory. During the high power test, a peak power mul-tiply factor of 5.74 and average power gain of 3.77 was achieved. This paper presents the RF measurement of the C-band spherical pulse compressor and the high power test results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB042  
About • paper received ※ 19 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB049 HOM Analysis of the 4-cell Superconducting Cavity on CTFEL Facility HOM, cavity, simulation, electron 2918
 
  • X. Luo, T.H. He, C.L. Lao, L.J. Shan, X.M. Shen, D. Wu, K. Zhou
    CAEP/IAE, Mianyang, Sichuan, People’s Republic of China
  • F. Wang
    PKU, Beijing, People’s Republic of China
 
  The higher order modes (HOMs) of the 1.3GHz 4-cell cavity on CTFEL facility is analyzed in this paper. The passbands of the HOMs in the 4-cell cavity were simulat-ed, and the most harmful modes were determined. The power of the wakefields was estimated. By microwave test at room temperature, the frequencies of the HOMs were measured, as well as the external Q’s of the HOM cou-plers. Besides, a frequency distribution measurement system was built. The HOM signal excited by beam at 2 K temperature is measured, and some preliminary results are obtained. The measurement techniques and results of the HOM damping performance are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB049  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB054 Design of the Multiplexing Optical Measurement System for a Pre-bunched THz Free Electron Laser laser, radiation, detector, electron 2931
 
  • Y.K. Zhao, W. Li, B.G. Sun, Y.G. Tang, F.F. Wu, T.Y. Zhou
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Funding: Work supported by the the Fundamental Research Funds for the Central Universities (WK2310000080, WK2310000057), and the National Science Foundation of China (11705203, 11575181)
A new and compact a pre-bunched terahertz (THz) free electron laser (FEL) at the National Synchrotron Radiation Laboratory, University of Science and Technology of China is being constructed and aims to generate the tunable radiation frequency ranges from 0.5 THz to 5 THz at 11-18 Mev electron energy. This system is expected to use for imaging, basic researches as well as industrial applications as a result of the significant merits of simple, compact and cost-effective. Due to the THz laser measurement system plays an important part in the pre-bunched THz FEL facility. Therefore, a multiplexing THz laser sensing measurement system model is developed for measuring the output laser power and the optical spectrum of THz radiation with the excellent advantages of robustness, high sensitivity and low-cost in this paper.
Corresponding author (email: tiany86@ustc.edu.cn)
Corresponding author (email: wufangfa@ustc.edu.cn)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB054  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB068 Ka-Band Linearizer Studies for a Compact Light Source wakefield, klystron, impedance, flattop 2976
 
  • A. Castilla, G. Burt, W.L. Millar
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • A. Latina, X. Liu, W.L. Millar, X.W. Wu, W. Wuensch
    CERN, Geneva, Switzerland
 
  Funding: This project has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreement No 777431.
The CompactLight project is currently developing the design of a next generation hard X-ray FEL facility, based on high-gradient X-band (12 GHz) structures, bright electron photo-injectors, and compact short period undulators. However, to improve the brightness limitations due to the non-linear energy spread of the electron bunches, a K-band (36 GHz) linearizer is being considered to provide a harmonic compensation during the bunch compression. In this paper, we analyze the feasibility of such linearizer.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB068  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB070 Facile Deposition of Superconducting MgB2 Thin Films on Substrates: A Comparative Investigation of Electrochemical Deposition and Magnetron Sputtering Techniques cavity, site, superconductivity, target 2984
 
  • N. Misra, A.N. Hannah, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R. Valizadeh
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: Authors acknowledge the funding received under the Rutherford International Postdoctoral Fellowship Programme
Coating of Copper cavities with a superconducting layer of MgB2 thin film is an attractive alternative to bulk Nb cavities. In this work, we investigate the application of two approaches-electrochemical deposition and magnetron sputtering of MgB2, to fabricate MgB2 films with potential accelerator applications. In the first approach, MgB2 powder dispersed in acetone was used as an electrolytic medium. Application of a DC voltage of 400 V between a graphite anode and a Copper film (serving as cathode), with the electrode distance maintained at ~2cm, resulted in the electrochemical deposition of MgB2 on the Cu surface. In an alternate approach, MgB2 in powder form was used directly for sputtering based deposition. The powder was initially compacted to form a thin layer that served as the magnetron target. Application of a pulsed DC power of 25W for 4 hours yielded MgB2 thin film on Si substrates. Samples were characterized by XPS analysis to ascertain their elemental composition, which confirmed the presence of Mg and B, in addition to traces of C and O as impurities. Surface morphology was determined using SEM characterization technique. Further work to determine the superconducting properties of the samples and fine tune the deposition processes for large scale MgB2 deposition inside actual RF cavities is in progress.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB070  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS017 Synchrotron Radiation Module in OCELOT Toolkit electron, undulator, radiation, simulation 3127
 
  • S. Tomin, G. Geloni
    EuXFEL, Hamburg, Germany
 
  Synchrotron radiation (SR) sources based on single-pass accelerators (e.g. linacs, plasma accelerators) have to cope with electron beams with a rather complicated phase space distribution. In this case, the convolution method usually employed to calculate radiation properties can give poor accuracy or be not applicable at all. Moreover, dynamical effects can also play a role in the emission mechanism. This happens when the beam parameters (e.g. beam current) significantly change during the passage through the undulator. In this work, we present a dedicated SR module of the OCELOT toolkit, which is well suited to deal with these situations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS017  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS061 Experimental Test of Longitudinal Space-Charge Amplifier in Optical Range electron, undulator, laser, experiment 3267
 
  • C. Lechner, M. Dohlus, B. Faatz, V. Grattoni, G. Paraskaki, J. Rönsch-Schulenburg, E. Schneidmiller, M.V. Yurkov, J. Zemella
    DESY, Hamburg, Germany
  • V. Miltchev
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Longitudinal space-charge effects can act as a driver for short wavelength radiation production in a longitudinal space-charge amplifier (LSCA) *. A single cascade of an LSCA was tested using the hardware of the sFLASH experiment installed at the FEL user facility FLASH (at DESY, Hamburg). Scans of the longitudinal dispersion of the chicane were performed with the tightly focused electron beam for different compression settings, while recording the intensity of the emission from a few-period undulator. We present experimental results and estimates on electron beam properties.
* E.A. Schneidmiller and M.V. Yurkov, Phys. Rev. ST Accel Beam 13, 110701 (2010)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS061  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS092 3d Start-to-End Simulations of the Coherent Electron Cooling electron, simulation, plasma, kicker 3329
 
  • J. Ma, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Coherent electron cooling (CeC) is a novel technique for rapidly cooling high-energy, high-intensity hadron beam. Two designs of coherent electron cooler, with a free electron laser (FEL) amplifier and a plasma-cascade micro-bunching amplifier, are cost effective and don’t require separation of hadrons and electrons. These schemes are used for the demonstration experiment in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). SPACE, a parallel, relativistic 3D electromagnetic Particle-in-Cell (PIC) code, has been used for simulation studies of these two coherent electron cooler systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS092  
About • paper received ※ 15 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYPLS1 RF Controls Towards Femtosecond and Attosecond Precision cavity, LLRF, controls, detector 3414
 
  • F. Ludwig, J. Branlard, L. Butkowski, M.K. Czwalinna, M. Hierholzer, M. Hoffmann, M. Killenberg, T. Lamb, J. Marjanovic, U. Mavrič, J.M. Müller, S. Pfeiffer, H. Schlarb, Ch. Schmidt, L. Springer
    DESY, Hamburg, Germany
  • M. Kuntzsch, K. Zenker
    HZDR, Dresden, Germany
 
  In the past two decades, RF controls have improved by two orders in magnitude achieving meanwhile sub-10 fs phase stabilities and 10-4 amplitude precision. Advances are through improved field detection methods and massive usage of digital signal procession on very powerful field programmable gate arrays (FPGAs). The question rise, what can be achieved in the next 10 years? In this talk, a review is given of existing systems and strategies, current stability limitations of RF control system and new technologies with the potential to achieve attosecond resolutions.  
slides icon Slides THYPLS1 [10.328 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THYPLS1  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYYPLS1 On-Demand Beam Route and RF Parameter Switching System for Time-Sharing of a Linac for X-ray Free-Electron Laser as an Injector to a 4th-Generation Synchrotron Radiation Source linac, electron, injection, controls 3427
 
  • H. Maesaka, T. Fukui, T. Hara, T. Inagaki, H. Tanaka
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • T. Hasegawa, O. Morimoto, Y. Tajiri, S. Tanaka, M. Yoshioka
    SES, Hyogo-pref., Japan
  • N. Hosoda, S. Matsubara, T. Ohshima
    JASRI/SPring-8, Hyogo-ken, Japan
  • C. Kondo, K. Okada, M. Yamaga
    JASRI, Hyogo, Japan
 
  We have an upgrade plan of the SPring-8 storage ring to provide much more brilliant X-rays with a low-emittance electron beam. Since the upgraded ring requires a low-emittance injection beam, we are planning to timeshare the linac of the X-ray free electron laser (XFEL) facility, SACLA, as an injector for the upgraded ring. The SACLA linac delivers low-emittance and short-bunch electron beams to two XFEL beamlines with a 60 Hz repetition rate. The beam route is right now equally changed by a kicker magnet at a switchyard. The beam parameter is also optimized for each XFEL beamline by changing RF parameters pulse-by-pulse with simple software at this moment*. Since the number of beam injection shots to the storage ring is much less frequent than XFEL shots, one of the XFEL shots must be overridden by an injection with on-demand basis. In addition, the beam quality, such as 1 mm mrad normalized emittance, 10 fs bunch length and 10 kA peak current, must be maintained not to deteriorate the XFEL performance. Therefore, we have developed an on-demand beam route and RF parameter switching system with sufficient speed, precision and reliability. A beam route data is transmitted to each accelerator unit by a reflective memory network, and special software changes the parameters of each accelerator unit pulse-by-pulse according to the received data. We tested the on-demand switching system at a test bench and the SACLA linac. The beam parameters were appropriately controlled with a negligible failure rate. The user service of the beam injection from SACLA to SPring-8 is scheduled in 2020 and the on-demand switching system is almost ready for the time-sharing operation of multiple XFEL beamlines and a SPring-8 injection.
* T. Hara et al., Phys. Rev. Accel. Beams 21, 040701 (2018).
 
slides icon Slides THYYPLS1 [8.519 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THYYPLS1  
About • paper received ※ 16 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP013 Challenges Towards Industrialization of the ERL-FEL Light Source for EUV Lithography cavity, SRF, cathode, undulator 3478
 
  • N. Nakamura, E. Kako, R. Kato, H. Kawata, T. Miyajima, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
 
  EUV Lithography is going to HVM (high volume manufacturing) stage with 250-W-class laser-produced plasma sources and it is important to develop a new-type EUV light source to meet future demand for higher power. Energy-recovery linac based free-electron lasers (ERL-FELs) are possible candidates of a high-power EUV light source that can distribute 1 kW power to multiple scanners simultaneously. In Japan, an ERL-FEL based EUV light source has been designed using available technologies without much development to demonstrate generation of EUV power more than 10 kW and the EUV-FEL Light Source Study Group for Industrialization has been established since 2015 to realize industrialization of the light source and the related items. For industrialization, high availability is essential as well as high power and reduction of the light source size is also required. In this paper, we will report an overview of the designed ERL-FEL light source for EUV lithography and some activities for the industrialization and describe considerations and developments for obtaining high availability and size reduction of the light source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP013  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP042 Performance Optimization of Ion Beam Therapy proton, diagnostics, medical-accelerators, simulation 3537
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie grant agreement No 675265.
Proton beam therapy promises significant advantages over other forms of radiation therapy. However, to assure the best possible cancer care for patients further R&D into novel beam imaging and patient diagnostics, enhanced biological and physical models in Monte Carlo codes, as well as clinical facility design and optimization is required. Within the pan-European Optimization of Medical Accelerators (OMA) project collaborative research is being carried out between universities, research and clinical facilities, and industry in all of these areas. This contribution presents results from studies into low-intensity proton beam diagnostics, prompt gamma-based range verification in proton therapy, as well as prospects for a new proton irradiation facility for radiobiological measurements at an 18 MeV cyclotron within OMA. These results are then connected to the wider project aims of enhancing ion beam therapy. A summary of past and future events organised by the OMA consortium is also given.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP042  
About • paper received ※ 10 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW051 MCP Based Detectors of European XFEL detector, photon, radiation, electron 3703
 
  • E. Syresin, O.I. Brovko, A.Yu. Grebentsov
    JINR, Dubna, Moscow Region, Russia
  • W. Freund, J. Grünert
    EuXFEL, Schenefeld, Germany
  • M.V. Yurkov
    DESY, Hamburg, Germany
 
  Radiation detectors based on microchannel plates (MCP) are used for measurements of the SASE process of the European XFEL. Detectors operate in a wide dynamic range from the level of spontaneous emission to the saturation level (between a few nJ and 25 mJ) and in a wide wavelength range from 0.05 nm to 0.4 nm for SASE1 and SASE2 and from 0.4 nm to 4.43 nm for SASE3. Photon pulse energies are measured by the MCPs with an anode and by a photodiode. The MCP imager measures the photon beam image with a phosphor screen. Three MCP detectors are installed, one behind each SASE undulator (SASE1, SASE2, and SASE3). Calibration and first experiments with the MCP detectors are under discussion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW051  
About • paper received ※ 29 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW087 Transverse Jitter Tolerance Issues for Beam-Driven Plasma Accelerators plasma, emittance, acceleration, electron 3774
 
  • G.R. White, T.O. Raubenheimer
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the Department of Energy under Contract Number: DE-AC02-76SF00515.
Transverse jitter tolerances are considered for beam-driven plasma accelerators. A simple model for jitter transfer from the drive to witness beam is developed and concrete examples are studied for: high-brightness witness bunch injectors; high-energy boosters for FEL’s; and future Linear Colliders. Compared with an existing PWFA driver facility ([*,**]), the calculated tolerances are 18X ’ 170X tighter than achievable, even considering any upgrades with existing technology.
* Nature 445 741 Feb 2007, Nature 515, Nov. 2014
** FACET-II Technical Design Report, SLAC-R-1072, "The FLASHForward facility at DESY", NIMA Oct., 2015
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW087  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW089 Mechanical Design of a Diamond Crystal Hard X-Ray Self-Seeding Monochromator for PAL-XFEL vacuum, controls, alignment, electron 3782
 
  • D. Shu, J.W.J. Anton, S.P. Kearney, K. Kim, Yu. Shvyd’ko
    ANL, Argonne, Illinois, USA
  • H.-S. Kang, C.-K. Min, B.G. Oh, S.Y. Rah
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357
As a part of the Argonne Strategic Partnership Project (SPP) 85H21, a collaboration between Advanced Photon Source (APS), Argonne National Laboratory (ANL) and Pohang Accelerator Laboratory (PAL), we have designed, constructed, and tested a thin-film-diamond monochromator for the PAL X-ray Free-Electron-Laser (PAL-XFEL) hard x-ray self-seeding project*. The mechanical design of the PAL-XFEL diamond crystal hard x-ray self-seeding monochromator is based on the APS design of a diamond-crystal monochromator for the LCLS hard x-ray self-seeding project** with enhanced diamond crystal holder for two thin-film-diamond crystals with thicknesses of 30 microns and 100 microns***. The customized high quality thin-film-diamonds and special graphite holder were provided by the Technological Institute for Super-hard and Novel Carbon Materials of Russia (TISNCM)****, and tested at the APS***. An in-vacuum multi-axis precision positioning mechanism is designed to manipulate the duo-thin-film diamonds holder with resolutions and stabilities required by the hard x-ray self-seeding physics. Mechanical specifications, designs, and preliminary test results of the diamond monochromator are presented in this paper.
*Chang-Ki Min, et al, sub. J. Sync. Rad., 2018
**D. Shu, et al, J. Phys.: Conf. Ser. 425 (2013) 052004
***Y. Shvyd’ko, et al, FEL2017, Santa Fe
****Polyakov S, et. al, 2011 Diam. Rel. Mat. 20 726
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW089  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB018 Large-Scale Optical Synchronization System of the European XFEL with Femtosecond Precision laser, electron, FEM, controls 3835
 
  • T. Lamb, M.K. Czwalinna, M. Felber, C. Gerth, T. Kozak, J.M. Müller, H. Schlarb, S. Schulz, C. Sydlo, M. Titberidze, F. Zummack
    DESY, Hamburg, Germany
 
  Femtosecond pulsed optical synchronization systems have evolved over the last few years and are now a mature technique to synchronize FELs. A large-scale femtosecond-precision synchronization system with up to 44 end-stations has been constructed at the European XFEL to meet the FEL synchronization stability requirements. The synchronization system is used to phase-lock various laser systems with femtosecond accuracy, to precisely measure the electron bunch arrival time along the accelerator for fast arrival time feedbacks and to locally phase stabilize the phase of the RF reference signals for the accelerator RF controls on a femtosecond level. The architecture of the large-scale synchronization system and design choices made to achieve the reliability, maintainability and performance requirements are presented together with measurement results from the past year of operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB018  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB024 Piezo Controls For The European XFEL cavity, controls, linac, LLRF 3856
 
  • K.P. Przygoda, J. Branlard, L. Butkowski, M.K. Grecki, M. Hierholzer, M. Omet, H. Schlarb
    DESY, Hamburg, Germany
 
  The European X-Ray Free Electron Laser (E-XFEL) accelerator is a pulse machine. The typical time duration of a radio frequency (RF) pulse is about 1.3 ms. The RF power transmitted to the superconducting RF (SCRF) cavity as a set of successive pulses (10 Hz repetition rate), causes strong mechanical stresses inside the cavity. The mechanical deformations of the RF cavity are typically caused by the Lorentz force detuning (LFD). The cavity can be tuned to a 1.3 GHz resonance frequency during the RF pulse using fast piezo tuners. Since the E-XFEL will use around 800 cavities (each cavity with double piezos), a distributed architecture with multi-channel digital and analog control circuits seems to be essential. The most sought-after issue is high-voltage, high-current piezo driving circuit dedicated to multi-channel configuration. The driving electronics should allow a maximum piezo protection against any kind of failure. The careful automation of the piezo tuners control and its demonstration for the high gradient conditions a real challenge. The first demonstration of piezo controls applied for chosen RF stations of the E-XFEL linear accelerator (linac) are presented and obtained results are briefly discussed within this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB024  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB038 ALARM SYSTEM OF IRFEL AT NSRL GUI, controls, interface, EPICS 3896
 
  • X. Chen, C. Li, G. Liu, Z.X. Shao, Y. Song, J.G. Wang, K. Xuan
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  An InfraRed Free Electron Laser Light (IRFEL) is under commissioning at National Synchrotron Radiation Laboratory (NSRL). The control system of IRFEL is a distributed system based on Experimental Physics and Industrial Control System (EPICS). The alarm system is an essential part of the control system. It is developed based on the software Phoebus. The module named "Alarms" in Phoebus can store states and configuration information of the Process Variable (PV) in the Kafka topics. To meet our requirements, 3 kinds of alarm message distribution applications are developed, i.e. Web-Based GUI, WeChat and SMS. This paper will introduce the alarm system architecture and the implementations of the applications for alarm message distribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB038  
About • paper received ※ 17 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB041 Design a Precise Stability Controller for High Power Pulse Modulator Based on FPGA controls, FPGA, linac, experiment 3900
 
  • Y.F. Liu, Z.H. Chen, M. Gu, J. Tong, Y. Wu, Q. Yuan, X.X. Zhou
    SINAP, Shanghai, People’s Republic of China
 
  Shanghai Soft X-ray Free Electron Laser (SXFEL) facility is under testing at Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences. The stability of RF system is one of the major factors to get great beam performance. It is mainly determined by klystron modulators power supply. The beam voltage of the LINAC klystron modulator, which is the pulsed power source of the RF amplifier, is directly affecting the RF amplitude and phase. This paper shows the suitable upgrade scheme of the modulator power supply and design considerations for the stability improvement of modulator power supply for Shanghai SXFEL. We present a real time feedback control system of LINAC pulse modulator to improve pulse to pulse amplitude stability. The feedback control system is based on the principle of embedded FPGA techniques. The control system consists of an embedded NIOS II processor, a High resolution ADC and an upper computer. The NIOS II processor manage on chip FIFO, ADC, IRQ, and Ethernet. The relevant experiments indicate that the feedback control strategy reaches required function. It is useful to improve the stability of existing modulator power supply.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB041  
About • paper received ※ 21 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB042 Stability Research Progress on High-power Pulse Modulator for SXFEL-UF controls, feedback, FPGA, network 3904
 
  • Q. Yuan, M. Gu, Y.F. Liu, J. Tong, Y. Wu
    SINAP, Shanghai, People’s Republic of China
 
  Funding: Supported by the National Natural Science Foundation of China(11675250)
Abstract: SXFEL-UF(Shanghai Soft X-ray Free Electron Laser User Facility) under construction presently demands higher energy stability. Stability of pulse modulator feeding power for klystron plays an utmost important role in energy stability and occupy dominant factors in bringing influences in stability of RF power. Presently, stability of high-power pulse modulator of LINAC (Linear Accelerator) is on the level of 0.1% to 0.05% usually. In order to meet the higher stability requirements, it is very necessary for close-loop feedback control techniques instead of traditional open-loop to be applied in the modulator design. The stability controller adopts double control-loops techniques which feedback signals are respectively from PFN(Pulse Forming Network) and pulse transformer in oil tank. In addition, the paper also introduces recent progress on high stability CCPS research(Capacitor Charging Power Supply), which brings direct impact on the stability of modulator. In comparison with the former close-loop design, high stability CCPS design takes the overall modulator stability into full consideration. And the feedback control algorithm utilized to adjust PWMs for full bridge switch is implemented in the CCPS controller directly rather than modulator controller independent of CCPS. It is expected to obtain 0.01% stability by taking the above measures.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB042  
About • paper received ※ 06 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB044 LLRF Control System for RF GUN at SXFEL Test Facility gun, controls, LLRF, FPGA 3912
 
  • L. Li, Q. Gu, Y.J. Liu, C.C. Xiao, J.Q. Zhang
    SINAP, Shanghai, People’s Republic of China
  • Y.F. Liu, Z. Wang
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  A Soft X-ray Free Electron Laser Test Facility (SXFEL-TF) based on normal conducting linear accelerator was constructed at the Shanghai Synchrotron Radiation Facility (SSRF) campus by a joint team of Shanghai Institute of Applied Physics and Tsinghua University. It consists of multiple Radio Frequency (RF) stations with standing wave cavity (RF Gun) and traveling wave accelerating structures working at different frequencies. Low Level Radio Frequency (LLRF) system is used to measure the RF field in the cavities or structures and correct the fluctuation in RF fields with pulse-to-pulse feedback controllers. This paper describes the hardware and architecture of the LLRF system for electromagnetic filed stabilization inside the radio frequency electron gun, in the SXFEL-TF. A complete control path has be presented, including RF front-end board, I/Q detector and feedback controller. Algorithms used to stabilize the RF field have been presented as well as the software environment used to provide remote access to the control device. Finally, the performance of the LLRF system that was realized in the beam commissioning is presented and meets the high accuracy requirements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB044  
About • paper received ※ 23 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB054 Design of a Ultrafast Stripline Kicker for Bunch-by-Bunch Feedback kicker, impedance, feedback, HOM 3931
 
  • J. Wang, P. Li, D. Wu, D.X. Xiao, L.G. Yan
    CAEP/IAE, Mianyang, Sichuan, People’s Republic of China
 
  Lorentz force detuning and beam loading effect of the rf cavities will induce a slope of the cavity gradient. Combed with the cavity misalignments, transverse position of subsequent bunches will differ from each other. The CAEP THz Free Electron Laser facility(CTFEL) will have a fast transverse bunch-by-bunch feedback system on its test beamline, which is used to correct the beam position differences of individual bunches in the macro-pulses. The time response of the kicker is rigid for the interval of the micro-pulses is 18.5ns and will upgrade to about 2 ns, requiring impedance matching of the kicker with the power source and transmission system in a high bandwidth. Also, the electromagnetic field must reach the requirements of the beam parameters. In this paper, the structure design and the optimization of the geometric parameters of the ultrafast stripline kicker is presented. The characteristic impedance, transmission characteristics, field consistency are analyzed and optimized. And the feedback signal generation scheme for continuous bunch trains was proposed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB054  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB063 Field Control Challenges for Different LINAC Types cavity, controls, linac, electron 3946
 
  • O. Troeng, A.J. Johansson
    Lund University, Lund, Sweden
  • M. Eshraqi
    ESS, Lund, Sweden
  • S. Pfeiffer
    DESY, Hamburg, Germany
 
  Linacs for free-electron lasers typically require cavity field stabilities of 0.01\% and 0.01 degree, while the requirements for high-intensity proton linacs are on the order of 0.1–1\% and 0.1–1 degrees. From these numbers it is easy to believe that the field control problem for proton linacs is many times easier than for free-electron lasers linacs. In this contribution we explain why this is not necessarily the case, and discuss the factors that make field control challenging. We also discuss the drivers for field stability, and how high-level decisions on the linac design affect the difficulty of the field control problem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB063  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB117 Stability and Reliability Issues of PAL-XFEL Modulator klystron, operation, power-supply, electron 4096
 
  • S.H. Kim, H.-S. Kang, K.H. Kim, H.-S. Lee, C.-K. Min, S.S. Park, Y.J. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: This work is supported by Ministry of Science, ICT(Information/Communication Technology) and Future Planning.
The Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) employs 51 units of the pulse modulator in order to obtain the 10 GeV electron beam, which drive one X-band to linearize and 50 S-band klystrons. The PAL-XFEL requires very tight control of the klystron RF phase jitter 0.03-degree for S-band RF, 0.1-degree for X-band RF and the beam voltage stability of below 50 ppm. The RF phase jitter is directly related to the amplitude stability of modulator output pulses. There are several factors to satisfy the stability and reliability for the PAL-XFEL modulator. The largest sources of pulse-to-pulse instability are a current charging power supply (CCPS) for PFN charging, a thyratron switch, and a klystron focusing magnet power supply (MPS). In this paper, the operation and debugging results of those devices are described.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB117  
About • paper received ※ 16 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS077 Beam Instability Induced by RF System of an FEL-THZ Source electron, linac, target, radiation 4298
 
  • X.D. Tu, G. Feng, S.J. He, T. Hu, J. Jiang, S.Y. Lu, Y.Q. Xiong
    HUST, Wuhan, People’s Republic of China
 
  An SLAC-like Compact Linac installed on the HUST FEL-THz has been used as an injector to produce high power THz radiation. To meet the requirements of monochromaticity and repeatability for FEL, performance of electron beam and stability of RF system are notable. According to the existing facility, based on measurement results of RF jitter, instability of beam has been calculated, and it has been verified in relevant experiments. Furthermore, stability targets in RF system has been pro-posed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS077  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)