Keyword: proton
Paper Title Other Keywords Page
MOYPLM1 Challenges to Higher Beam Power in J-PARC: Achieved Performance and Future Prospects operation, resonance, extraction, experiment 6
 
  • S. Igarashi
    KEK, Ibaraki, Japan
 
  J-PARC is a world leading intensity frontier accelerator facility, consisting of a 400-MeV H linac, a 3-GeV Rapid Cycling Synchrotron (RCS) and a 30-GeV slow cycling Main Ring synchrotron (MR). The RCS delivered a 500 kW beam (4.2·1013 particles per pulse (ppp)) to the Material and Life science experimental Facility (MLF) in April of 2018, The design power of 1 MW will be delivered in the next few years. Construction of a second target station (2TS) of the MLF with beam power upgraded to 1.5 MW is now under discussion. The MR delivers proton beam to a long-baseline neutrino oscillation experiment, T2K, by fast extraction (FX) and to the hadron experimental facility by slow extraction (SX). For the FX, the maximum beam power is 475 kW and 2.5·1014 ppp, the world highest ppp in synchrotrons, and for the SX 51 kW and 5.5·1013 ppp with an extremely high extraction efficiency of 99.5 %. To achieve 1.3 MW beam power for the neutrino experiment, upgrades to allow operation with a higher repetition rate are planned. The talk will review recent progress of J-PARC facility by highlighting technical challenges toward higher beam power together with future prospects.  
slides icon Slides MOYPLM1 [9.193 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOYPLM1  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZZPLM3 Commissioning and First Results of the Fermilab Muon Campus experiment, positron, target, MMI 41
 
  • D. Stratakis, B.E. Drendel, J.P. Morgan, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • N.S. Froemming
    CENPA, Seattle, Washington, USA
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
 
  In the following years, the Fermilab Muon Campus will deliver highly polarized muon beams to the Muon g-2 Experiment. The Muon Campus contains a target section wherein secondaries are produced, the delivery ring which separates the muons from the rest of the beam and a sequence of beamlines that transports them to the Muon g-2 storage ring. Here, we report the first results of beam measurements at the Muon Campus with emphasis on the key achievements that have contributed to the successful beam delivery to the Muon g-2 Experiment. These achievements include the production of an intense secondary beam from the target, it’s transport over 2 km, the successful monitoring of muons from the available diagnostics and the development of techniques for measuring the transverse optics. We also present detailed comparisons between experimental data and simulation and discuss the similarities and differences observed.  
slides icon Slides MOZZPLM3 [2.846 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZZPLM3  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZZPLS1 eRHIC Design Overview electron, hadron, storage-ring, luminosity 45
 
  • C. Montag, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, W. Guo, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, S. Verdú-Andrés, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, Long Island, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • Y. Hao
    FRIB, East Lansing, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC) is being envisioned as the next facility to be constructed by the DOE Nuclear Physics program. Brookhaven National Laboratory is proposing eRHIC, a facility based on the existing RHIC complex as a cost effective realization of the EIC project with a peak luminosity of 1034 cm-2 sec-1. An electron storage ring with an energy range from 5 to 18 GeV will be added in the existing RHIC tunnel. A spin-transparent rapid-cycling synchrotron (RCS) will serve as a full-energy polarized electron injector. Recent design improvements include reduction of the IR magnet strengths to avoid the necessity for Nb3Sn magnets, and a novel hadron injection scheme to maximize the integrated luminosity. We will provide an overview of this proposed project and present the current design status.
 
slides icon Slides MOZZPLS1 [5.428 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZZPLS1  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW005 Space-Charge Potential for Elliptical Beams space-charge, beam-beam-effects, focusing 69
 
  • S.R. Koscielniak
    TRIUMF, Vancouver, Canada
 
  This work is motivated by the weak-strong beam-beam effect as occurs in colliding charged-particle beams. We consider beams with elliptical cross section and power law binomial forms for the density distribution. We demonstrate explicitly how to construct analytically the space-charge potential inside the ’strong’ beam. This is essential to the program of calculating beam-beam effects for non-gaussian beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW005  
About • paper received ※ 19 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW035 Coupling Impedance of the Collimator Without RF-Shields at the RCS in J-PARC impedance, simulation, synchrotron, collimation 163
 
  • Y. Shobuda, J. Kamiya, K. Moriya, K. Okabe
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  All holes on the chamber walls of synchrotrons should be filled with the radiofrequency (RF)-shields to suppress coupling impedances that excite beam instabilities. In a synchrotron, titanium nitride (TiN)-coated RF-shields are installed with collimators. If the holes, through which the collimator jaw enters and exits the chamber, are filled with such RF-shields, the shields may break down as the dynamic coefficient of TiN increases in vacuum. At the Rapid Cycling Synchrotron (RCS), the RF-shields are eliminated from the collimator after demonstrating that the effect due to the RF-shields is negligible on the impedance at low frequencies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW035  
About • paper received ※ 28 April 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW036 Studies on Coherent Multi-Bunch Tune Shifts with Different Bunch Spacing at the J-PARC Main Ring space-charge, impedance, operation, injection 167
 
  • A. Kobayashi, S. Igarashi, Y. Sato, T. Shimogawa, Y. Sugiyama, T. Toyama, M. Yoshii
    KEK, Tokai, Ibaraki, Japan
 
  At a high-power proton synchrotron, betatron tune shifts induced by space charge effects cause beam loss which limits the beam intensity. To achieve further high beam intensity at the main ring of the Japan Proton Accelerator Research Complex, precise control of the tune shift is indispensable. When carrying out multi-bunch measurements, we observed that the dependence of the tune shift intensity on the number of bunches follow opposite slope trends for the horizontal and vertical directions. The influence of the bunch spacing was also observed. We report on a simplified tune shift model reconstruction for understanding the origin of these phenomena and present a correction of the tune shifts for reducing beam loss up to 30 %.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW036  
About • paper received ※ 01 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW046 Proton Beam Steering for the Experimental Muon Source at CSNS solenoid, target, extraction, neutron 193
 
  • Y.K. Chen, H.T. Jing
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • C. Meng, Y.P. Song, J.Y. Tang, G. Zhao
    IHEP, Beijing, People’s Republic of China
 
  Experimental Muon Source (EMuS) is a muon source to be built at China Spallation Neutron Source (CSNS). The EMuS baseline design adopts a stand-alone target sitting in capture superconducting solenoids, and the muon beam is extracted in the forward direction. In the same time the spent protons are also extracted from the target station and guided to an external. Because there is an angle of 15 degrees between the axis of solenoids and the proton direction, the protons will be deviated by the solenoid field. A pair of correction magnets in front of the solenoids is used to align the incoming proton beam to the target and also guide the spent protons to the beam dump. As the target station is design to work at different field level, this increases the complexity of the proton beam transport.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW046  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW070 Longitudinal Stability of the Hollow Ion Bunches After Momentum Slip-Stacking in the CERN SPS simulation, emittance, damping, synchrotron 254
 
  • T. Argyropoulos, A. Lasheen, D. Quartullo, E.N. Shaposhnikova
    CERN, Geneva, Switzerland
 
  Momentum slip-stacking is planned to be used for the lead ion beams in the CERN SPS to double the beam intensity for the High-Luminosity LHC project. During this RF manipulation two SPS batches, controlled by two independent RF systems, are going to be interleaved on an intermediate energy plateau, reducing the bunch spacing from 100 to 50 ns. However, there are limitations how close the frequencies of two RF systems can approach each other, resulting in a hole in the longitudinal bunch particle distribution due to the offset in energy of the recaptured bunches. After filamentation, these bunches should be further accelerated to the SPS top energy, before extraction to the LHC. Macro-particle simulations have shown that Landau damping is lost for the bunches with the smallest longitudinal emittances in the batch, causing un-damped oscillations of the bunch core after recapture. The standard application of an additional, fourth harmonic RF system, successfully used in proton operation, was not able to damp the oscillations at top energy, while it was necessary to switch it on from the moment of recapture. In this paper the longitudinal stability of the bunches after slip-stacking is studied in more details both by macro-particle simulations and analytical calculations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW070  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW081 Measurements of Stray Magnetic Fields at CERN for CLIC klystron, site, collider, dipole 289
 
  • C. Gohil, N. Blaskovic Kraljevic, D. Schulte
    CERN, Meyrin, Switzerland
  • P. Burrows
    JAI, Oxford, United Kingdom
  • B. Heilig
    MFGI, Budapest, Hungary
 
  Simulations have shown that the Compact Linear Collider (CLIC) is sensitive to external dynamic magnetic fields (stray fields) to the nT level. Magnetic fields are not typically measured to this precision at CERN. Past measurements of the background magnetic field at CERN are limited. In this paper new measurements are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW081  
About • paper received ※ 01 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW089 Longitudinal Mode-Coupling Instability: GALACLIC Vlasov Solver vs. Macroparticle Tracking Simulations impedance, simulation, coupling, synchrotron 320
 
  • E. Métral
    CERN, Geneva, Switzerland
  • M. Migliorati
    Rome University La Sapienza, Roma, Italy
  • M. Migliorati
    INFN-Roma1, Rome, Italy
 
  Following the same approach as for the recently developed GALACTIC Vlasov solver in the transverse plane and taking into account the potential-well distortion, a new Vlasov solver, called GALACLIC, was developed for the longitudinal plane. In parallel, a new mode analysis was implemented for the post-processing of the results obtained through macroparticle tracking simulations. The results of the several benchmarks performed between the two methods are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW089  
About • paper received ※ 23 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW094 First Machine Developments Result with HL-LHC Crab Cavities in the SPS cavity, closed-orbit, luminosity, diagnostics 338
 
  • L.R. Carver, A. Alekou, F. Antoniou, H. Bartosik, T. Bohl, R. Calaga, M. Carlà, T.E. Levens, G. Papotti
    CERN, Meyrin, Switzerland
  • A. Alekou, R.B. Appleby, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • G. Burt
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • G. Burt, J.A. Mitchell
    Lancaster University, Lancaster, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Crab cavities are a critical component within the High Luminosity upgrade project for the Large Hadron Collider (HL-LHC). It is foreseen to use crab cavities in order to compensate the geometric luminosity reduction factor (reduction of the luminous region at the Interaction Point [IP]) due to the beam crossing angle (required for minimizing the impact of the long range beam-beam effects on the single particle beam dynamics) and increase the number of collisions per bunch crossing. In 2018 the first beam tests of crab cavities with protons were performed in the Super Proton Synchrotron (SPS) at CERN. Two vertical superconducting cavities of the Double Quarter Wave (DQW) type were fabricated and installed in the SPS to verify some key components of the cavity design and operation. This paper will present some of the first results relating to the proton beam dynamics in the presence of crab cavities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW094  
About • paper received ※ 25 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW123 Electromagnetic Study and Measurements of the iRCMS Cell focusing, optics, quadrupole, extraction 403
 
  • N. Tsoupas, P.N. Joshi, F. Méot, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
  • D.T. Abell
    RadiaSoft LLC, Boulder, Colorado, USA
  • V.L. Bailey, J.P. Lidestri
    Best Medical International, Springfield, USA
  • M. Sinnott
    Everson Tesla Inc., Nazareth, Pennsylvania, USA
 
  Funding: BNL Contract TSA-NF-18-80
The ion Rapid Cycle Medical Synchrotron (iRCMS) * will provide proton and C ion bunches with maximum energy 270 MeV and 450 MeV/u respectively at a frequency of 15 Hz for treating cancerous tumors. One of the six cells of the iRCMS has been designed, built and magnetic field measurements have been performed. We will present results from the static and AC electromagnetic study of the iRCMS cell and compare the measured magnetic fields with those calculated using the OPERA computer code **. In addition the beam optics of the cell will be calculated based on the experimental fields using the zgoubi computer code *** and compared with the designed beam optics.
* D. Trbojevic, iRCMS Magnet Review, BNL, Sept. 6, 2012 (unpublished)
** OPERA computer code https://operafea.com/
*** The zgoubi computer code https://www.bnl.gov/isd/documents/79375.pdf
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW123  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP014 NICA Accelerator Complex at JINR booster, collider, dipole, injection 452
 
  • E. Syresin, O.I. Brovko, A.V. Butenko, E.E. Donets, A.R. Galimov, E.V. Gorbachev, A. Govorov, V. Karpinsky, V. Kekelidze, H.G. Khodzhibagiyan, S.A. Kostromin, A.D. Kovalenko, O.S. Kozlov, I.N. Meshkov, A.V. Philippov, A.O. Sidorin, V. Slepnev, A.V. Smirnov, G.V. Trubnikov, A. Tuzikov, V. Volkov
    JINR, Dubna, Moscow Region, Russia
 
  Status of the project of NICA accelerator complex, which is under construction at JINR (Dubna, Russia), is presented. The main goal of the project is to provide ion beams for experimental studies of hot and dense baryon-ic matter and spin physics. The NICA collider will pro-vide heavy ion collisions in the energy range of √sNN=4/11 GeV at average luminosity of L=1.1027cm−2·s−1 for 197Au79+ nuclei and polarized proton collisions in energy range of √sNN=12/27 GeV at lumi-nosity of L ≥ 1031cm−2·s−1. NICA accelerator complex will consist of two injector chains, 578 MeV/u supercon-ducting (SC) booster synchrotron, the existing SC syn-chrotron (Nuclotron), and the new SC collider that has two storage rings each of 503 m circumference. Con-structing facility is based on Nuclotron-technology of SC magnets with iron yoke. Hollow SC cable cooled by two-phase He-flux used for operation with 10 kA currents and 1Hz cycling rate. Both stochastic and electron cooling methods are used for the beam accumulation and its stability maintenance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP014  
About • paper received ※ 29 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP024 Prospects for Future Asymmetric Collisions in the LHC luminosity, experiment, operation, hadron 484
 
  • M.A. Jebramcik, J.M. Jowett
    CERN, Geneva, Switzerland
 
  The proton-lead runs of the LHC in 2012, 2013 and 2016 provided luminosity far beyond expectations in a diversity of operating conditions and led to important new results in high-density QCD. This has permitted the scope of the future physics programme to be expanded in a recent review. Besides further high-luminosity p-Pb collisions, lighter nuclei are also under consideration. A short proton-oxygen run, on the model of the 2012 p-Pb run, would be of interest for cosmic-ray physics. Other collision systems like proton-argon or collisions of protons with other noble gases are also discussed. We provide an overview of the operational strategies and potential performance of various asymmetric collision options. Potential performance limits from moving beam-beam encounters at injection and various beam-loss mechanisms are evaluated in the light of our understanding of the LHC to date.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP024  
About • paper received ※ 18 April 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP025 Moving Long-range Beam-beam Encounters in Heavy-ion Colliders emittance, injection, collider, acceleration 488
 
  • M.A. Jebramcik, J.M. Jowett
    CERN, Geneva, Switzerland
 
  Asymmetric ion beam collisions like proton-lead in the LHC or gold-deuteron in RHIC have become major components of heavy-ion physics programmes. The injection and ramp of two different ion species with the same magnetic rigidity and consequently unequal revolution frequencies generate moving long-range beam-beam encounters in the interactions regions of the collider. These encounters led to fast beam losses and can cause emittance blow-up as observed in RHIC in the early 2000s and, more recently, in 2015. Yet such effects are absent at the LHC so the difference between the two colliders requires explanation. Tools and models have been developed to describe the beam dynamics of moving long-range beam-beam encounters and to predict the evolution of emittance and other beam parameters. Besides presenting results for RHIC and the LHC we give an outlook for the HL-LHC and potential operational restrictions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP025  
About • paper received ※ 18 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP031 Operation and Performance of the Cern Large Hadron Collider During Proton Run 2 luminosity, operation, emittance, injection 504
 
  • R. Steerenberg, M. Albert, R. Alemany-Fernández, T. Argyropoulos, E. Bravin, G.E. Crockford, J.-C. Dumont, K. Fuchsberger, R. Giachino, M. Giovannozzi, G.H. Hemelsoet, W. Höfle, D. Jacquet, M. Lamont, E. Métral, D. Nisbet, G. Papotti, M. Pojer, L. Ponce, S. Redaelli, B. Salvachua, M. Schaumann, M. Solfaroli, R. Suykerbuyk, G. Trad, J.A. Uythoven, S. Uznanski, D.J. Walsh, J. Wenninger, M. Zerlauth
    CERN, Geneva, Switzerland
 
  Run 2 of the CERN Large Hadron Collider (LHC) was successfully completed on 10th December 2018, achieving largely all goals set in terms of luminosity production. Following the first two-year long shutdown and the re-commissioning in 2015 at 6.5 TeV, the beam performance was increased to reach a peak luminosity of more than twice the design value and a colliding beam time ratio of 50%. This was accomplished thanks to the increased beam brightness from the injector chain, the high machine availability and the performance enhancements made in the LHC for which some methods and tools, foreseen for the High Luminosity LHC (HL-LHC) were tested and deployed operationally. This contribution provides an overview of the operational aspects, main limitations and achievements for the proton Run 2.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP031  
About • paper received ※ 13 May 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP037 Updated High-Energy LHC Design injection, emittance, impedance, damping 524
 
  • F. Zimmermann, D. Amorim, S. A. Antipov, S. Arsenyev, M. Benedikt, R. Bruce, M.P. Crouch, S.D. Fartoukh, M. Giovannozzi, B. Goddard, M. Hofer, J. Keintzel, R. Kersevan, V. Mertens, J. Molson, Y. Muttoni, J.A. Osborne, V. Parma, V. Raginel, S. Redaelli, T. Risselada, I. Ruehl, B. Salvant, D. Schoerling, E.N. Shaposhnikova, L.J. Tavian, E. Todesco, R. Tomás, D. Tommasini, F. Valchkova-Georgieva, V. Venturi, D. Wollmann
    CERN, Geneva, Switzerland
  • J.L. Abelleira, A. Abramov, E. Cruz Alaniz, H. Pikhartova, A. Seryi, L. van Riesen-Haupt
    JAI, Oxford, United Kingdom
  • A. Apyan
    ANSL, Yerevan, Armenia
  • J. Barranco García, L. Mether, T. Pieloni, L. Rivkin, C. Tambasco
    EPFL, Lausanne, Switzerland
  • F. Burkart
    DESY, Hamburg, Germany
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • G. Guillermo Cantón
    CINVESTAV, Mérida, Mexico
  • K. Ohmi, K. Oide, D. Zhou
    KEK, Ibaraki, Japan
 
  Funding: This work was supported in part by the European Commission under the HORIZON 2020 project ARIES no.730871, and by the Swiss Accelerator Research and Technology collaboration CHART.
We present updated design parameters for a future High-Energy LHC. A more realistic turnaround time has led to a revision of the target peak luminosity, as well as a choice of a larger IP beta function, and longer physics fills. Pushed parameters of the Nb3Sn superconducting cable together with a modified layout of the 16 T dipole magnets resulted in revised field errors, updated dynamic-aperture simulations, and an associated re-evaluation of injector options. Collimators in the dispersion suppressors help achieve satisfactory cleaning performance. Longitudinal beam parameters ensure beam stability throughout the cycle. Intrabeam scattering rates and Touschek lifetime appear benign.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP037  
About • paper received ※ 10 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB004 The European Spallation Source Neutrino Super Beam Design Study linac, target, neutron, detector 582
 
  • M. Dracos, E. Bouquerel
    IPHC, Strasbourg Cedex 2, France
  • G. Fanourakis
    Institute of Nuclear and Particle Physics, Attiki, Greece
  • G. Gokbulut, A. Kayis Topaksu
    Cukurova University, Adana, Turkey
 
  Funding: This project is supported by the COST Action CA15139 EuroNuNet. It has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777419.
The discovery of oscillations and the latest progress in neutrino physics will make possible to observe for the first time a possible CP violation at the level of leptons. This will help to understand the disappearance of antimatter in the Universe. The ESSnuSB* project proposes to use the proton linac of the ESS currently under construction to produce a very intense neutrino Super Beam, in parallel with the spallation neutron production. The ESS linac is expected to deliver 5 MW average power, 2 GeV proton beam, with a rate of 14 Hz and pulse duration of 2.86 ms. By doubling the pulse rate, 5 MW power more can be provided for the production of the neutrino beam. In order to shorten the proton pulse duration to few μs requested by the neutrino facility, an accumulation ring is needed, imposing the use and acceleration of H instead of protons in the linac. The neutrino facility also needs a separate target station with a different design than the one of the neutron facility. On top of the target, a hadron magnetic collecting device is needed in order to focus the emerging hadrons from the target and obtain an intense neutrino beam directed towards the neutrino detector.
A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac, Nuclear Physics B, Vol 885, Aug 2014, 127-149, arXiv:1309.7022.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB004  
About • paper received ※ 10 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB019 Beam Optics Study on FFA-MERIT Ring injection, target, betatron, acceleration 613
 
  • H. Okita, Y. Ishi, Y. Kuriyama, Y. Mori, Y. Ono, A. Taniguchi, T. Uesugi
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • N. Ikeda, Y. Yonemura
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka, Japan
  • M. Kinsho, K. Okabe, M. Yoshimoto
    JAEA/J-PARC, Tokai-mura, Japan
  • Y. Miyake
    KEK, Tokai, Ibaraki, Japan
  • M. Muto
    New Affiliation Request Pending, -TBS-, Unknown
  • A. Sato
    Osaka University, Osaka, Japan
 
  Funding: This work was funded by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).
Intense negative muon source MERIT (Multiplex Energy Recovery Internal Target) for the nuclear transformation to mitigate the long lived fission products from nuclear plants has been proposed. For the purpose of proof-of-principle of MERIT scheme, FFA ring has been developed. The results of beam optics study for MERIT ring will be reported in this conference.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB019  
About • paper received ※ 30 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB021 Remodeling of 150 MeV FFAG Main Ring at KURNS to Pion Production Ring FFAG, target, focusing, resonance 616
 
  • K. Suga, Y. Fuwa, Y. Ishi, Y. Kuriyama, Y. Mori, H. Okita, T. Uesugi
    Kyoto University, Research Reactor Institute, Osaka, Japan
 
  A possibility of remodeling main ring of 150 MeV FFAG accelerator at Kyoto University, Institute for Integrated Radiation and Nuclear Science (KURNS) to Pion Production Ring (PPR) for muon transmutation study has been discussed. Design was made on the assumption that 400 MeV proton beams circulate and hit a target in the ring to generate pions. Optimizations of lattice parameters and 3D magnet modeling are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB021  
About • paper received ※ 30 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB026 High-Quality Muon Beam Production Based on Superconducting Solenoids target, polarization, experiment, solenoid 630
 
  • Y. Bao, X. Li, Y. Li, Y.P. Song, X. Tong
    IHEP, Beijing, People’s Republic of China
 
  Funding: This work is supported by the Science Foundation of The Chinese Academy of Sciences and National Natural Science Foundation of China (No. 11875281)
In labs, muon beams are produced by protons hitting targets. The initial phase space of the muon beam is extremely large. In general, two types of muon collection methods have been used in the world. One is to put the muon production target in a superconducting solenoid, and low-energy muons are collected from the back of the target, then transported through a bent solenoid. In this way, a high-intensity muon beam can be collected, but the energy spread is wide and the beam polarization is low. For most muSR applications a surface muon beam with narrow energy bite and high polarization is required. Most muSR facilities are built with collecting magnets by the side of the target, in this way only a small fraction of muons with low emittance are collected and transported downstream. In this work we outline a muon collection method based on superconducting solenoid. Instead of using bent solenoids, a matching section with a dipole magnet is used to select muons with a certain momentum and match to downstream beamliines. A high-quality muon beam can be achieved with a high intensity and polarization. Such a method can be adapted to the MUSIC, Mu2e, and COMET muon beamlines after their dedicate experiments and convert the beamlines into a high quality muSR facility.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB026  
About • paper received ※ 30 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB028 Application of WCM in Beam Commissioning of RCS in CSNS neutron, bunching, MMI, target 636
 
  • M.T. Li, F. Li
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • Y.W. An, S.Y. Xu, T.G. Xu
    IHEP, Beijing, People’s Republic of China
 
  Wall Current Monitor (WCM) is the only beam instru-ment in RCS of CSNS. It is utilized to derive many kinds of physics parameters during beam commissioning. The longitudinal phase distribution of the bunch over the boosting time is deduced for our future analyzation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB028  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB029 Longitudinal Tomography for Analysing the Longitudinal Phase Space Distribution in RCS of CSNS MMI, neutron, synchrotron, FEL 639
 
  • M.T. Li
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • Y.W. An, S.Y. Xu, T.G. Xu
    IHEP, Beijing, People’s Republic of China
 
  It is proved that in the beam commissioning of the RCS of CSNS, the longitudinal optimization is vital for the promotion of the beam power. The WCM is the only beam instrument for the measurement of the longitudinal parameters. It is important for us to deduce the longitudi-nal phase space distribution, using the WCM data. The longitudinal tomography is applied, and some satisfying results have been obtained.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB029  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB041 Spin Resonance Strength in the Transparent Spin Mode of the NICA Collider polarization, solenoid, resonance, collider 656
 
  • Y. Filatov, S.V. Vinogradov
    MIPT, Dolgoprudniy, Moscow Region, Russia
  • A.M. Kondratenko, M.A. Kondratenko
    Science and Technique Laboratory Zaryad, Novosibirsk, Russia
  • A.D. Kovalenko
    JINR, Dubna, Moscow Region, Russia
 
  To implement the polarization program at the NICA complex (Dubna, Russia) the novel mode of ion polarization control - the transparent spin mode - is planned to use. To set up the transparent spin mode in the NICA collider two solenoidal snakes will be placed in straights of the Multi Purpose Detector (MPD) and the Spin Physics Detector (SPD). The beam polarization at SPD will be controlled by means of ‘‘weak’’ solenoids. The main characteristic of the transparent spin mode is the spin resonance strength, which consists of two parts: a coherent part arising due to additional transverse and longitudinal fields on the beam trajectory deviating from the design orbit and an incoherent part associated with the particles’ betatron and synchrotron oscillations (beam emittances). The resonance strength allows one to formulate requirements on the magnitudes of the control solenoids’ fields. The theoretical analysis, calculation and spin tracking simulation of the spin resonance strength in the whole momentum range of the NICA collider are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB041  
About • paper received ※ 01 May 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB045 Future High Power Proton Drivers for Neutrino Beams linac, operation, neutron, factory 662
 
  • D.C. Plostinar, M. Eshraqi, B. Gålnander
    ESS, Lund, Sweden
  • V.A. Lebedev
    Fermilab, Batavia, Illinois, USA
  • C.R. Prior
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • Y. Sato
    KEK, Ibaraki, Japan
  • J.Y. Tang
    IHEP, Beijing, People’s Republic of China
 
  Funding: ESSnuSB has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 7774.
Over the last two decades, significant efforts were made through several international studies to identify and develop technical solutions for potential Neutrino Factories and Superbeam Facilities. With many questions now settled, as well as clearer R&D needs, various proposals are being made for future facilities in China, Europe, Japan and North America. These include both developing and adapting existing machines as well as green-field solutions. In this paper, we review all the major accelerator programmes aimed at delivering high-power proton beams for neutrino physics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB045  
About • paper received ※ 22 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB048 Collimation System Studies for the FCC-hh collimation, collider, simulation, hadron 669
 
  • R. Bruce, A. Abramov, A. Bertarelli, M.I. Besana, F. Carra, F. Cerutti, M. Fiascaris, G. Gobbi, A.M. Krainer, A. Lechner, A. Mereghetti, D. Mirarchi, J. Molson, M. Pasquali, S. Redaelli, D. Schulte, E. Skordis, M. Varasteh Anvar
    CERN, Geneva, Switzerland
  • A. Abramov
    JAI, Egham, Surrey, United Kingdom
  • A. Faus-Golfe
    LAL, Orsay, France
  • M. Serluca
    IN2P3-LAPP, Annecy-le-Vieux, France
 
  The Future Circular Collider (FCC-hh) is being designed as a 100 km ring that should collide 50 TeV proton beams. At 8.3 GJ, its stored beam energy will be a factor 28 higher than what has been achieved in the Large Hadron Collider, which has the highest stored beam energy among the colliders built so far. This puts unprecedented demands on the control of beam losses and collimation, since even a tiny beam loss risks quenching superconducting magnets. We present in this article the design of the FCC-hh collimation system and study the beam cleaning through simulations of tracking, energy deposition, and thermo-mechanical response. We investigate the collimation performance for design beam loss scenarios and potential bottlenecks are highlighted.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB048  
About • paper received ※ 18 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB049 Study of Beam-Gas Interactions at the LHC for the Physics Beyond Colliders Fixed-Target Study target, collider, experiment, simulation 673
 
  • C. Boscolo Meneguolo, R. Bruce, F. Cerutti, M. Ferro-Luzzi, M. Giovannozzi, A. Mereghetti, J. Molson, S. Redaelli
    CERN, Geneva, Switzerland
  • A. Abramov
    JAI, Egham, Surrey, United Kingdom
 
  Among several working groups formed in the framework of Physics Beyond Colliders study, launched at CERN in September 2016, there is one investigating specific fixed-target experiment proposals. Of particular interest is the study of high-density unpolarized or polarized gas target to be installed in the LHCb detector, using storage cells to enhance the target density. This work studies the impact of the interactions of 7 TeV proton beams with such gas targets on the LHC machine in terms of particle losses.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB049  
About • paper received ※ 17 April 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB050 Performance of the Collimation System During the 2018 Lead Ion Run at the Large Hadron Collider collimation, simulation, heavy-ion, hadron 677
 
  • N. Fuster-Martínez, R. Bruce, J.M. Jowett, A. Mereghetti, D. Mirarchi, S. Redaelli
    CERN, Meyrin, Switzerland
 
  As part of the Large Hadron Collider (LHC) heavy-ion research programme, the last month of the 2018 LHC run was dedicated to Pb ion physics. Several heavy-ion runs have been performed since the start-up of the LHC. These runs are challenging for collimation, despite lower intensities, because of the degraded cleaning observed compared to protons. This is due to the differences of the interaction mechanisms in the collimators. Ions experience fragmentation and electromagnetic dissociation that result in a substantial flux of off-rigidity particles that escape the collimation system. In this paper, the collimation system performance and the experience gained during the 2018 Pb ion run are presented. The measured performance is compared with the expectation from the Sixtrack-FLUKA coupling simulations and the agreement discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB050  
About • paper received ※ 07 May 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB051 Collimation System Upgrades for the High Luminosity Large Hadron Collider and Expected Cleaning Performance in Run 3 collimation, hadron, collider, dipole 681
 
  • A. Mereghetti, R. Bruce, N. Fuster-Martínez, D. Mirarchi, S. Redaelli
    CERN, Geneva, Switzerland
 
  In the framework of the High-Luminosity Large Hadron Collider project (HL-LHC), the LHC collimation system needs important upgrades to cope with the foreseen brighter beams. New collimation hardware will be installed in two phases, the first one during the LHC second Long Shutdown (LS2), in 2019-20, followed by a second phase starting in 2024 (LS3). This paper reviews the collimation upgrade plans for LS2, focused on a first impedance reduction of the system, through the installation of collimators based on new materials, and the improvement of collimation cleaning, achieved by adding new collimators in the cold dispersion suppressor regions. The performance of the new system in terms of cleaning inefficiency for proton and lead ion beams is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB051  
About • paper received ※ 06 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB059 Collimation of Heavy-Ion Beams in the HE-LHC collimation, collider, hadron, simulation 704
 
  • A. Abramov, L.J. Nevay
    JAI, Egham, Surrey, United Kingdom
  • R. Bruce, M.P. Crouch, N. Fuster-Martínez, A. Mereghetti, J. Molson, S. Redaelli
    CERN, Meyrin, Switzerland
 
  A design study for a future collider to be built in the LHC tunnel, the High-Energy Large Hadron Collider (HE-LHC), has been launched as part of the Future Circular Collider (FCC) study at CERN. It would provide proton collisions at a centre-of-mass energy of 27 TeV as well as collisions of heavy ions at the equivalent magnetic rigidity. HE-LHC is being designed under the stringent constraint of using the existing tunnel and therefore the resulting lattice and optics differ in layout and phase advance from the LHC. It is necessary to evaluate the performance of the collimation system for ion beams in HE-LHC in addition to proton beams. In the case of ion beams, the fragmentation and electromagnetic dissociation that relativistic heavy ions can undergo in collimators, as well as the unprecedented energy per nucleon of the HE-LHC, requires dedicated simulations. Results from a study of collimation efficiency for the nominal lead ion (Pb-82-208) beams performed with the SixTrack-FLUKA coupling framework are presented. These include loss maps with comparison against an estimated quench limit as well as detailed considerations of loss spikes in the superconducting aperture for critical sections of the machine such as the dispersion suppressors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB059  
About • paper received ※ 18 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB060 Simulating Novel Collimation Schemes for High-Luminosity LHC With Merlin++ scattering, collimation, simulation, electron 708
 
  • S.C. Tygier, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • R.J. Barlow, S. Rowan
    IIAA, Huddersfield, United Kingdom
 
  Due to the large stored beam energy in the HL-LHC new collimation technologies must be used to protect the machine. Active halo control of the proton beam halo with a Hollow Electron Lens can give a kick to protons at the edge of the beam without effecting the core. Various modes of operation are possible for example the electron lens can have a continuous current or it can be pulsed to different amplitudes for each passage of the proton beam. In this article we use Merlin++ simulations to show the performance of these modes for HL-LHC parameters. We also present recent simulations comparing scattering models in Merlin++.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB060  
About • paper received ※ 08 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB063 Longitudinal Tomography in a Scaling FFA synchrotron, cavity, experiment, injection 719
 
  • D.J. Kelliher, C. Brown, J.-B. Lagrange, S. Machida, C.R. Prior, C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • Y. Ishi, Y. Kuriyama, H. Okita, T. Uesugi
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • S.L. Sheehy
    JAI, Oxford, United Kingdom
 
  In a synchrotron the rate of acceleration is limited by the ramp rate of the bending field. There is no such constraint in a Fixed Field alternating gradient Accelerator (FFA), allowing a much higher repetition rate and novel modes of operation such as beam stacking. It is of interest to obtain a picture of the longitudinal phase space from experimental data in order to diagnose the response of the beam to various RF programmes. Longitudinal tomography, already well established in synchrotrons, involves reconstructing the phase space using bunch monitor data obtained for a sufficient number of turns in a synchrotron oscillation. Here we reconstruct the longitudinal phase space using data from the 150 MeV scaling FFA at KURNS, Osaka, Japan.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB063  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB064 Precision Modelling of Energy Deposition in the LHC using BDSIM simulation, detector, collimation, beam-losses 723
 
  • S.D. Walker, A. Abramov, S.T. Boogert, S.M. Gibson, L.J. Nevay, H. Pikhartova
    JAI, Egham, Surrey, United Kingdom
 
  A detailed model of the Large Hadron Collider (LHC) has been built using Beam Delivery Simulation (BDSIM) for studying beam loss patterns and is presented and discussed in this paper. BDSIM is a program which builds a Geant4 accelerator model from generic components bridging accelerator tracking routines and particle physics to seamlessly simulate the traversal of particles and any subsequent energy deposition in particle accelerators. The LHC model described here has been further refined with additional features to improve the accuracy of the model, including specific component geometries, tunnel geometry, and more. BDSIM has been extended so that more meaningful comparisons with other simulations and data can be made. Firstly, BDSIM can now record losses in the same way that SixTrack does: when a primary exceeds the limits of the aperture it is recorded as a loss. Secondly, by placing beam loss monitors (BLMs) within the BDSIM model and recording the simulated dose and energy deposition, it can be directly compared with real BLM data. These results are presented here and compared with SixTrack and BLM data from a typical fill in 2018.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB064  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB065 Enhancing Experimental Prospects With Low Energy Antiprotons antiproton, detector, experiment, cryogenics 727
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie grant agreement No 721559.
The Extra Low Energy Antiproton ring (ELENA) is a critical upgrade to the Antiproton Decelerator (AD) at CERN and saw the first beam in 2018. ELENA will significantly enhance the achievable quality of low energy antiproton beams and enable new experiments. To fully exploit the potential of this new facility, advances are required in numerical tools that can adequately model beam transport, life time and interaction, beam diagnostics tools and detectors to fully characterize the beam’s properties, as well as in novel experiments that take advantage of the enhanced beam quality that ELENA can provide. These research areas are in the heart of the pan-European research and training network AVA (Accelerators Validating Antimatter physics) which started in 2017. This contribution presents research results within AVA on the performance of ultra-thin diamond membranes, electron cooling and beam life time studies of low energy ion and antiproton beams, as well as efficient integration and performance optimization of cryogenic detectors in ELENA and associated trap experiments. These results are used to describe the optimum layout of a state-of-the-art low energy antiproton facility and associated experiments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB065  
About • paper received ※ 13 May 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB090 Simulation Challenges for eRHIC Beam-Beam Study electron, simulation, damping, emittance 785
 
  • Y. Luo, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
  • Y. Hao
    FRIB, East Lansing, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • Y. Roblin, H. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The 2015 Nuclear Science Advisory Committee Long Rang Plan identified the need for an electron-ion collider (EIC) facility as a gluon microscope with capabilities beyond those of any existing accelerator complex. To reach the required high energy, high luminosity, and high polarization, the eRHIC design, based on the existing heavy ion and polarized proton collider RHIC, adopts a very small \beta-function at the interaction points, a high collision repetition rate, and a novel hadron cooling scheme. A full crossing angle of 22 mrad and crab cavities for both electron and proton rings are required. In this article, we will present the high priority R\&D items related to the beam-beam interaction studies for the current eRHIC design, the simulation challenges, and our plans and methods to address them. Recent progresses on this project are reported too.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB090  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB091 Combined Strong-Strong and Weak-Strong Beam-Beam Simulations for Crabbed Collision in eRHIC electron, simulation, luminosity, cavity 788
 
  • Y. Luo, G. Bassi, M. Blaskiewicz, W. Fischer, Y. Hao, C. Montag, V. Ptitsyn, V.V. Smaluk, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
  • K. Ohmi
    KEK, Ibaraki, Japan
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In the eRHIC, to compensate the geometric luminosity loss, local crab cavities on both sides of the interaction points are to adopted. The previous strong-strong beam-beam simulations showed that the luminosity degradation depends on the crab cavity frequency, proton synchrotron tune, proton bunch length and so on. In this article, we apply a combined strong-strong and weak-strong beam-beam simulation to investigate the incoherent and coherent beam motions with crabbed collison, and to calculate more realistic beam emittance growth rates and luminosity degradation rate.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB091  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB098 An Increased Extraction Energy Booster Complex for the Jefferson Lab Electron Ion Collider booster, collider, electron, extraction 797
 
  • E.A. Nissen
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, world-wide license to publish or reproduce this manuscript.
The proposed Jefferson Lab Electron Ion Collider (JLE-IC) envisions an ion complex composed of an ion linac, two booster synchrotrons and a collider ring. The evolving design of the JLEIC booster required an increase in the extraction energy of the booster from 8 to 12.1 GeV kinetic energy, necessitating two machines instead of one. The decision was also made to switch to warm magnets, thus increasing the total radius of the 8 GeV booster. The second booster is now the same size as the collider rings. In this work we present the new designs for JLEIC’s Low Energy Booster (LEB) and High Energy Booster (HEB).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB098  
About • paper received ※ 14 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB100 An Improved eRHIC Interaction Region Design Without High Field Nb3Sn Magnets electron, hadron, quadrupole, dipole 799
 
  • B. Parker, R.B. Palmer, H. Witte
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The IR magnets for the eRHIC Collider proposed at BNL must provide strong fields for the high momentum hadron beam and yet protect the nearby electron beam focusing channel from these fields. In our initial design the electron and hadron magnets were staggered so their respective cold masses did not overlap; however, this restricts the longitudinal space for the first hadron quadrupole and led to the challenge of making a high-field Nb3Sn main coil structure fit inside limited radial space within an external field active shield coil. In our new layout the crossing angle increased from 22 to 25 mrad and the electron and hadron cold masses are now side-by-side. This layout allows longer magnetic lengths for reducing the coil peak fields; NbTi conductor can now be used everywhere. Of course we must take care to control magnetic cross talk between neighboring apertures. One trick we will use to accomplish this is to maximize the yoke material thickness between the beams by tapering (i.e. change coil radius as a function of longitudinal position) some of the electron coils. The new eRHIC IR layout and magnet design is reported in this paper along with ongoing R&D to wind tapered coils.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB100  
About • paper received ※ 15 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB103 A Phase Shifter for Multi-Pass Recirculating Proton LINAC cavity, linac, superconducting-magnet, superconducting-cavity 802
 
  • J. Qiang, L.N. Brouwer, S. Prestemon
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and used computer resources at the National Energy Research Scientific Computing Center.
The multi-pass recirculating proton linac can significantly improve the usage efficiency of RF superconducting cavities by passing the proton beam through the same cavity multiple times. However, in order to achieve the multiple acceleration, synchronous conditions in phase have to be satisfied. In this paper, we propose a fixed field superconducting magnet system as a phase shifter to meet the synchronous conditions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB103  
About • paper received ※ 09 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB104 A Parameter Study for Improving the Performance of the Production Target for the Fermilab Muon g-2 Experiment target, simulation, experiment, storage-ring 806
 
  • D. Stratakis
    Fermilab, Batavia, Illinois, USA
 
  The target station of the Muon g-2 Experiment is one of the central pieces for the production of secondary pions which eventually will decay to the desired mu-ons. In this paper, we report adjustments made to opti-mize its performance. For instance, in the simulation we vary the size of the primary incoming beam and examine its impact on the downstream production. We then compare this with the actual measured beam size upstream of the target. In addition, we examine the sensitivity in performance with the strength of the lithium lens for pion capture and the distance between lens and target. We compare measured data with simu-lation results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB104  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB109 Cavity Design for the Updated eRHIC Crabbing System cavity, operation, electron, hadron 818
 
  • S. Verdú-Andrés, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates LLC under contract no. DE-SC0012704 with the U.S. Department of Energy.
The electron-ion collider eRHIC proposed by Brookhaven National Laboratory includes a crabbing system to reestablish head-on collisions for a maximum geometric overlap of the colliding bunches. Since the last cavity design, the crossing angle has increased from 22 to 25 mrad to relax the field strength requirement in one of the IR magnets - increasing the deflecting kick required to collider the bunches head on - and one of the considered options is to have both proton and electron crab cavities work at 200 MHz. The present paper discusses the RF design of the 200 MHz crab cavities for the electron and hadron beams of eRHIC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB109  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB116 Laser Sculpted Cool Proton Beams laser, emittance, linac, simulation 826
 
  • S.M. Gibson, L.J. Nevay
    Royal Holloway, University of London, Surrey, United Kingdom
  • S. E. Alden, S.M. Gibson, L.J. Nevay
    JAI, Egham, Surrey, United Kingdom
 
  Funding: We acknowledge support by STFC grant ST/P003028/1
Hydrogen ion accelerators, such as CERN’s Linac4, are increasingly used as the front end of high power proton drivers for high energy physics, spallation neutron sources and other applications. Typically, a foil strips the hydrogen ion beam to facilitate charge-exchange injection of protons into orbits of high energy accelerators, in which the resulting emittance is dominated by phase-space painting. In this paper, a new method to laser extract a narrow beam of neutralised hydrogen from the parent H ion beam is proposed. Subsequent foil stripping and capture of protons into a storage ring generates cool proton bunches with significantly reduced emittance compared to the parent beam. The properties of the extracted proton beam can be precisely controlled and sculpted by adjusting the optical parameters of the laser beam. Recirculation of the parent beam allows time for space-charge effects to repopulate the emittance phase space prior to repeated laser extraction. We present particle tracking simulations of the proposed scheme, including the laser-particle interaction with realistic optical parameters and show the resulting emittance is reduced. Developments for an experimental demonstration of a laser controlled particle beam are outlined. In principle, the proposed scheme could considerably reduce the emittance of protons bunches injected into an accelerator, such as the LHC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB116  
About • paper received ※ 16 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS005 Status of the SPIRAL2 Project linac, neutron, experiment, MMI 844
 
  • P. Dolegieviez, R. Ferdinand, X. Ledoux, H. Savajols, F. Varenne
    GANIL, Caen, France
 
  The SPIRAL2 facility at GANIL will use a high-power p, d and heavy-ion superconducting linac for a wide range of applications including RIB production using both ISOL and in-flight techniques. The SPIRAL2 phase 1 deals with the high-power superconducting linac with two experimental areas called ’Neutrons for Science’ (NFS) and ’Super Separator Spectrometer’ (S3). The low energy experimental hall DESIR, under construction, will further increase the possibility for physics experiments. All the linac is installed, the commissioning of the injec-tor part (two sources and the A/Q = 3 RFQ) and two cool down of the entire superconducting linac have been suc-cessfully done. We are now in the linac beam commis-sioning phase. The project scope and parameters, the constraints linked to the safety rules, the accelerator, NFS, S3 and DESIR status and the planning will be pre-sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS005  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS019 End to End Simulations and Error Studies of the FAIR Proton Linac linac, simulation, cavity, rfq 885
 
  • H. Hähnel, U. Ratzinger, M. Syha, R. Tiede
    IAP, Frankfurt am Main, Germany
  • C.M. Kleffner
    GSI, Darmstadt, Germany
 
  The FAIR proton linac is developed as the high current proton injector for the future FAIR antiproton production chain at GSI. It will provide a 70 mA proton beam at an energy of 68 MeV to the SIS18 synchrotron. The linac consists of an ECR ion source, followed by a ladder RFQ and a normalconducting linac based on CH-type cavities. High beam currents and strict beam quality requirements were the main drivers for the beam dynamics design. To ensure matching between the individual sections and validate the injector design as a whole, end to end simulations were performed using TraceWin with 3D fieldmaps of the CH-linac. In this paper, the final cavity design, as well as the results of end to end simulations and error studies are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS019  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS020 Status of the FAIR Proton LINAC linac, cavity, rfq, simulation 889
 
  • C.M. Kleffner, S. Appel, R. Berezov, J. Fils, P. Forck, P. Gerhard, M. Kaiser, K. Knie, A. Krämer, C. Mühle, S. Puetz, A. Schnase, G. Schreiber, A. Seibel, T. Sieber, V. Srinivasan, J. Trüller, W. Vinzenz, M. Vossberg, C. Will
    GSI, Darmstadt, Germany
  • H. Hähnel, U. Ratzinger, M. Schuett, M. Syha
    IAP, Frankfurt am Main, Germany
 
  For the production of Antiproton beams with sufficient intensities, a dedicated high-intensity 325 MHz Proton linac is currently under construction. The Proton linac shall deliver a beam current of up to 70 mA with an energy of 68 MeV for injection into SIS18. The source is designed for the generation of 100 mA beams. The Low-Energy Beam Transport line (LEBT) contains two magnetic solenoid lenses enclosing a diagnostics chamber, a beam chopper and a beam conus. A ladder 4-Rod RFQ and six normal conducting crossbar cavities of CCH and CH type arranged in two sections accelerate the beam to the final energy of 68 MeV. The technical design of the DTL CH cavities are presented and the commissioning measurements of the ion source are described. The construction and the procurement progress, the design and testing results of the key hardware are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS020  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS024 Reconstruction of the Longitudinal Phase Portrait for the SC CW Heavy Ion HELIAC at GSI heavy-ion, linac, cavity, quadrupole 898
 
  • S. Lauber, K. Aulenbacher, W.A. Barth, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, J. List, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher, F.D. Dziuba
    IKP, Mainz, Germany
  • W.A. Barth, C. Burandt, F.D. Dziuba, P. Forck, V. Gettmann, M. Heilmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, A. Rubin, T. Sieber, S. Yaramyshev
    GSI, Darmstadt, Germany
  • H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  At the GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany, the HElmholtz LInear ACcelerator (HELIAC) is currently under construction. The HELIAC comprises superconducting multigap Crossbar H-mode (SC CH) cavities. The input beam is delivered by an already existing High Charge Injector (HLI). For the further development of the accelerator a detailed knowledge of the input beam parameters to the SC section is necessary. A method for beam reconstruction is incorporated, which provides for longitudinal beam characteristics using measurements with a beam shape monitor and a particle simulation code. This finalizes the investigations on 6D beam parameters, following previous measurements in transversal phase space. The reconstruction of the longitudinal phase portrait is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS024  
About • paper received ※ 24 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS027 Conceptual Design of the Proton LINAC for the High Brilliance Neutron Source HBS linac, rfq, cavity, neutron 910
 
  • H. Podlech, M. Droba, K. Kümpel, S. Lamprecht, O. Meusel, N.F. Petry, P.P. Schneider, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • J. Baggemann, Th. Brückel, T. Cronert, P.-E. Doege, T. Gutberlet, E. Mauerhofer, U. Rücker, P. Zakalek
    JCNS, Jülich, Germany
  • S. Böhm
    NET, Aachen, Germany
  • J. Li
    IEK, Jülich, Germany
  • C. Zhang
    GSI, Darmstadt, Germany
 
  Due to the decommissioning of several research reactors there will be a severe drop in available neutrons for research in Europe in the next decade despite the commissioning of the European Spallation Source (ESS). Compact accelerator-based neutron sources (CANS) could close this gap. The High Brilliance Neutron Source (HBS) currently under development at Forschungszentrum Jülich is scalable in terms of beam energy and power due to its modular design. The driver Linac for HBS at will accelerate a 100 mA proton beam to 70 MeV. The Linac is operated with a beam duty cycle of up to 6% (11% RF duty cycle) and can simultaneously deliver three proton pulse lengths (384 Hz@52 mu-s, 96 Hz@208 mu-s and 24 Hz@832 mu-s) for three neutron production targets. In order to minimize the development effort and the technological risk, state-of-the-art technology of the MYRRHA injector is used. The front end of the HBS Linac consists of an ECR source, LEBT and a 2.5 MeV RFQ followed by a CH-DTL with 35 room temperature CH-cavities. All RF structures are operated at 176.1 MHz and are designed for high duty cycle. Solid-state amplifiers up to 500 kW are used as RF drivers. Due to the beam current and the high average beam power of up to 420 kW, particular attention is paid to beam dynamics. In order to minimize losses, a quasi-periodic lattice with constant negative phase is used. The contribution describes the conceptual design and the challenges of such a modern high power proton accelerator with high reliability and availability.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS027  
About • paper received ※ 07 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS033 RF Measurements and Tuning of the 325 MHz Ladder-RFQ rfq, linac, operation, simulation 925
 
  • M. Schuett, U. Ratzinger, M. Syha
    IAP, Frankfurt am Main, Germany
 
  Funding: BMBF 05P15RFRBA
Based on the positive results of the unmodulated 325 MHz Ladder-RFQ prototype from 2013 to 2016, we developed and designed a modulated 3.4 m Ladder-RFQ*. The unmodulated Ladder-RFQ features a very constant voltage along the axis. It accepted 3 times the operating power of which is needed in operation**. That level corresponds to a Kilpatrick factor of 3.1 with a pulse length of 200 µs. The 325 MHz RFQ is designed to accelerate protons from 95 keV to 3.0 MeV according to the design parameters of the proton linac within the FAIR project. This particular high frequency for a 4-ROD-RFQ creates difficulties, which triggered the development of a Ladder-RFQ with its high symmetry. The results of the unmodulated prototype have shown, that the Ladder-RFQ is very well suited for that frequency. The duty cycle is up to 5% for the applied cooling concept. Manufacturing has been completed in September 2018. We will show the finalization of assembly after manufacturing as well as low level RF measurements. The final machining step for both flatness and frequency tuning has been finished in April 2019.
*Journal of Physics: Conf. Series 874 (2017) 012048
**Proceedings of LINAC2016, East Lansing, TUPLR053
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS033  
About • paper received ※ 01 May 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS037 Comparison Between Measurement and Simulation of a Full Scale Prototype for the Proton Injector at FAIR cavity, simulation, linac, resonance 940
 
  • A. Seibel, C.M. Kleffner, K. Knie, M. Vossberg
    GSI, Darmstadt, Germany
  • U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  A dedicated 68 MeV, 70 mA proton injector is required for the research program at FAIR (Facility for Antiproton and Ion Research). This 325 MHz linear injector contains a RFQ and six CH structures. The CH (Crossbar H-mode) structures are working in the H210 mode. The main acceleration of this room temperature linac will be provided by the CH structures. For the second acceleration from 11.5 MeV to 24.2 MeV a full scale prototype has been built. This structure consists of two individual CH resonators and a coupling cell. Inside the structure there are 17 tuners, they have an impact on the electric field and the frequency. For operation a flat field is required, therefore this tuners must be correctly positioned. Some series of low level tuning and frequency measurements were done to determine the size of the tuners. Low level measurements and simulations will be compared and presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS037  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS047 Radiation Measurement in the 1st Beam Commissioning Campaign of the LIPAc RFQ rfq, neutron, radiation, MMI 964
 
  • K. Kondo, S. Kwon, K. Sakamoto, T. Shinya, M. Sugimoto
    QST, Aomori, Japan
  • L. Bellan, F. Grespan, F. Scantamburlo
    INFN/LNL, Legnaro (PD), Italy
  • P. Cara
    IFMIF/EVEDA, Rokkasho, Japan
  • H. Dzitko
    F4E, Germany
  • R. Heidinger
    Fusion for Energy, Garching, Germany
  • I. Podadera
    CIEMAT, Madrid, Spain
 
  The 1st proton beam acceleration of the Linear IFMIF Prototype Accelerator (LIPAc) through its novel RFQ was succeeded on 13th June 2018. Addition to plenty of beam diagnostics equipped in the beam line, we prepared some radiation detectors placed around the accelerator in order to acquire supplemental information of the beam, as an indirect measurement. In the first day of the beam injec-tion to the RFQ, the gamma-rays corresponding to certain excited states of Al of the low power beam dump were successfully detected by a LaBr3(Ce) scintillation detec-tor. Some neutrons, which would originate from the inter-action of protons with Cu somewhere, were also ob-served. These results proved that the beam was certainly accelerated up to about 2.5 MeV, and provided us a defin-itive confidence that the RFQ was working appropriately from the very beginning of the commissioning. Also, the comparison of the radiation yields with the RFQ trans-mission provided additional information on the beam energy distribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS047  
About • paper received ※ 23 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS049 The First Replacement of the RF Window of the ACS Cavity cavity, linac, vacuum, operation 971
 
  • J. Tamura, Y. Kondo, T. Morishita
    JAEA/J-PARC, Tokai-mura, Japan
  • F. Naito, M. Otani
    KEK, Tokai, Ibaraki, Japan
  • Y. Nemoto
    Nippon Advanced Technology Co., Ltd., Tokai, Japan
 
  In 2013, the Annular-ring Coupled Structure (ACS) cavities were installed to the Japan Proton Accelerator Research Complex (J-PARC) linac. Since then, the ACS cavities have been stably running. Although any serious problem induced by the ACS RF window has not yet observed, we decided to replace the RF window of one ACS cavity, which is the eighteenth accelerating cavity in the order of beam energy (ACS18), by the newly manufactured one. The major motivations of the replacement are to check the surface condition of the RF window which have been under operation for nearly five years and to confirm the availability of the newly manufactured RF window. By making use of the summer maintenance period of 2018, we carried out the replacement. This was the first experience for us to replace the RF window installed to the ACS cavity in the linac accelerator tunnel. As for the removed RF window, there was no any abnormal warning found with the visual examination. At the starting up of the cavity’s operation after the maintenance period, we investigated how much time would be required for an RF conditioning. It took around fifty hours so that the peak RF power including the beam loading is stably input to the cavity through the new RF window. The ACS cavity with the new RF window is now stably operating.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS049  
About • paper received ※ 01 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS059 The Status of CiADS Superconducting LINAC linac, cavity, cryomodule, operation 994
 
  • Z.J. Wang, Y. He, G. Huang, S.H. Liu, T. Tan, Y.Q. Wan, F.F. Wang, W.M. Yue
    IMP/CAS, Lanzhou, People’s Republic of China
 
  CiADS (China initiative Accelerator Driven System) approved by Chinese government at 2016 aims to build the first ADS experimental facility to demonstrate the nuclear waste transmutation. The CiADS driving linac can accelerate 5 mA proton beam to 500 MeV at the beam power up to 2.5 MW with the state-of-the-art accelerator technologies. The challenging programs include beam loss control-oriented physics design, high performance CW operated superconducting cavities, SRF cryomod-ules, and highly efficient RF amplifier system. As the driving linac of the ADS system, the RAMI characters will serve as the design philosophy to guide the physics design and the choice of technical routes. The physics design and key technologies of the high-power machine are descried in the paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS059  
About • paper received ※ 14 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS060 SESRI 300 MeV Proton and Heavy Ion Accelerator heavy-ion, ion-source, linac, synchrotron 998
 
  • H. P. Jiang, Q.M. Chen, W. Chen, Z.N. Han, H.F. Hao, J. Liu, J. Zhang, T. Zhang
    Harbin Institute of Technology(HIT), Harbin, People’s Republic of China
 
  The SESRI (Space Environment Simulation and Research Infrastructure) is the new national research infrastructure under construction at Harbin Institute of Technology (HIT) in China. This infrastructure is specifically built to simulate the space environment on the ground. The SESRI has kinds of accelerators, and the 300MeV proton and heavy ion accelerator is a major radiation source, which will supply 100-300MeV protons and 7-85MeV/u heavy ions for studying the interaction of high energy space particle radiation with material, device, module and life. To meet above requirements, the facility adopts the combination of room temperature ECR (Electron Cyclotron Resonance) ion source, linac injector and synchrotron. The ion source is required to provide all stable nuclide beams from H2+ to Bi. The linac injector supplies 1MeV/u heavy ion beams and 5MeV proton beam by using RFQ (Radio Frequency Quadrupole) and IH-DTL (Interdigital H-mode type Drift Tube Linac) linac structures. The synchrotron accelerates heavy ions up to 85MeV/u and proton beam 300MeV. And the 3rd integer resonance and RF-KO (RF-Knock-Out) method are adopted for slow extraction. The status of 300MeV proton and heavy ion accelerator design and construction works are briefly described below.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS060  
About • paper received ※ 22 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS082 Status of ESS Linac Upgrade Studies for ESSnuSB linac, ion-source, extraction, neutron 1038
 
  • B. Gålnander, M. Eshraqi, C.A. Martins, R. Miyamoto
    ESS, Lund, Sweden
  • M. Collins
    Lund Technical University, Lund, Sweden
  • A. Farricker
    CERN, Geneva, Switzerland
 
  Funding: ESSnuSB has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777419.
The European Spallation Source (ESS), currently under construction in Lund, Sweden, is the world’s most powerful neutron spallation source, with an average power of 5 MW at 2.0 GeV. In the ESS neutrino Super Beam Project (ESSnuSB) it is proposed to utilise this powerful accelerator as a proton driver for a neutrino beam that will be sent to a large underground Cherenkov detector in Garpenberg, mid-Sweden. In this paper we discuss the required modifications of the ESS linac to reach an additional 5 MW beam power for neutrino production in parallel to the spallation neutron production.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS082  
About • paper received ※ 17 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS085 Commissioning of a New Digital Transverse Damper System at the PSB feedback, operation, MMI, hardware 1050
 
  • G.P. Di Giovanni, F. Antoniou, A. Blas, Y. Brischetto, A. Findlay, G. Kotzian, B. Mikulec, G. Sterbini
    CERN, Geneva, Switzerland
 
  At the CERN Proton Synchrotron Booster, PSB, an analog transverse damper system has been in operation since 1999, providing satisfactory operational results with the proton beam supplied by Linac2. As a consequence of the LHC Injectors Upgrade, the PSB will face new challenges imposed by higher intensity, injection and extraction energy. In this framework, the transverse feedback system is subject to an upgrade to adapt to the expected Linac4 beam and to the demands for new features including transverse blow-up, beam excitation for optics measurements and new remote control and monitoring capabilities. The replacement of the aging electronic hardware is also recommended to improve the system maintainability for future years. During 2018 a new digital transverse feedback electronics was installed in the PSB, in parallel with the current operational one, offering for the first time the occasion to demonstrate its performance with beam. Encouraging results were obtained such as the suppression of beam instabilities at all PSB energies and intensities. In this paper we describe the steps undertaken in 2018 in order to commission the system with the main goal to accelerate and extract the highest intensity beams produced at the PSB.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS085  
About • paper received ※ 06 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS086 Identification and Compensation of Betatronic Resonances in the Proton Synchrotron Booster at 160 Mev resonance, space-charge, injection, emittance 1054
 
  • A. Santamaría García, S.C.P. Albright, F. Antoniou, F. Asvesta, H. Bartosik, G.P. Di Giovanni, B. Mikulec
    CERN, Geneva, Switzerland
  • F. Asvesta
    NTUA, Athens, Greece
  • H. Rafique
    University of Manchester, Manchester, United Kingdom
 
  The Proton Synchrotron Booster (PSB) is the first circular accelerator in the injector chain to the Large Hadron Collider (LHC) and accelerates protons from 50 MeV to 1.4 GeV. The PSB will need to deliver two times the current brightness after the LHC Injectors Upgrade (LIU) in order to meet the High Luminosity LHC (HL-LHC) beam requirements. At the current injection energy a large incoherent space charge tune spread limits the brightness of the beams, which is one of the main motivations to increase the injection energy to 160 MeV with the injection provided by Linac4, a new H linear accelerator. The higher injection energy will allow doubling the beam intensity while maintaining a space charge tune spread similar to current values. The degradation of the beam brightness due to the tune spread can be minimized with a proper choice of working point and an efficient compensation of resonances. In this paper, we present the measurement of the betatronic resonances in the four rings of the PSB at 160 MeV before the Long Shutdown 2, as well as the results of a proposed compensation scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS086  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS091 Mechanical Robustness of HL-LHC Collimator Designs experiment, site, interface, radiation 1070
 
  • F. Carra, A. Bertarelli, G. Gobbi, J. Guardia, M. Guinchard, F.J. Harden, M. Pasquali, S. Redaelli, E. Skordis
    CERN, Meyrin, Switzerland
 
  Funding: This work has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No. 730871. Research supported by the HL-LHC project.
Two new absorbing materials were developed as collimator inserts to fulfil the requirements of HL-LHC higher brightness beams: molybdenum-carbide graphite (MoGr) and copper-diamond (CuCD). These materials were tested under intense beam impacts at CERN HiRadMat facility in 2015, when full jaw prototypes were irradiated. Additional tests in HiRadMat were performed in 2017 on another series of material samples, including also improved grades of MoGr and CuCD, and different coating solutions. This paper summarizes the main results of the two experiments, with a main focus on the behaviour of the novel composite blocks, the metallic housing, as well as the cooling circuit. The experimental campaign confirmed the final choice for the materials and the design solutions for HL-LHC collimators, and constituted a unique chance of benchmarking numerical models. In particular, the tests validated the selection of MoGr for primary and secondary collimators, and CuCD as a valid solution for robust tertiary collimators.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS091  
About • paper received ※ 12 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS093 Ultra-High Vacuum Characterization of Molybdenum-Carbide Graphite for HL-LHC Collimators vacuum, collimation, site, collider 1078
 
  • F. Carra, C. Accettura, A. Bertarelli, G. Bregliozzi, G. Cattenoz, S. Redaelli, M. Taborelli
    CERN, Meyrin, Switzerland
  • M. Beghi
    POLIMI, Milano, Italy
  • J. Guardia Valenzuela
    Universidad de Zaragoza, Zaragoza, Spain
 
  Funding: This work has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No. 730871. Research supported by the HL-LHC project
In view of the High-Luminosity upgrade of the Large Hadron Collider (LHC) collimation system, a family of novel molybdenum-carbide graphite (MoGr) composites was developed to meet the challenging requirements of HL-LHC beam-halo collimation, in particular the electrical conductivity and thermo-mechanical performances. The Ultra-High Vacuum (UHV) behaviour of this material was extensively characterized to assess its compatibility with the accelerator’s specifications. The results presented in this paper correlate the outgassing behaviour with the microscopic features of MoGr compared to other graphite-based materials. Residual gas analysis (RGA) was exploited to optimize post-production treatments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS093  
About • paper received ※ 12 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS094 Dust Analysis from LHC Vacuum System to Identify the Source of Macro-Particle-Beam-Interactions vacuum, beam-losses, operation, dipole 1082
 
  • L. K. Grob, A. Apollonio, C. Charvet, E. Garcia-Tabares Valdivieso, H. Kos, R. Schmidt
    CERN, Geneva, Switzerland
  • C. Neves
    Hochschule Furtwangen, Furtwangen, Germany
 
  Since in 2010 the first sub-millisecond beam losses were observed at varying locations all along the LHC, it is well known that dust can interact with high-intensity proton beams and cause significant beam losses. Initially the sudden localized losses were enigmatic and coined the phrase ’unidentified falling objects’ (UFOs), which is still widely used. These very fast beam losses have resulted in hundreds of premature beam dumps and even magnet quenches since the start of LHC. So far, the only mitigation strategy involved an optimization of dump thresholds and the beneficial conditioning effect which leads to a reduction of the UFO rate over time. To understand the physics involved in these events and to allow an active diminution, it is essential to know the chemical composition and the size of the dust particulates interacting with the protons. The exchange of a dipole magnet offered the unique opportunity to collect dust samples from inside the LHC vacuum system. They were extracted from the various components and analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy to reveal size distribution and abundant elements. The results of this investigation will optimize the existing UFO models and the improved understanding of the phenomenon may help to prevent future performance limitations. This is also of relevance for future projects, in particular for the Future Circular Collider (FCC) under study.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS094  
About • paper received ※ 15 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS098 A Primary Electron Beam Facility at CERN linac, electron, injection, emittance 1098
 
  • Y. Papaphilippou, R. Corsini, Y. Dutheil, L.R. Evans, B. Goddard, A. Grudiev, A. Latina, S. Stapnes
    CERN, Meyrin, Switzerland
  • T.P.Å. Åkesson
    Lund University, Department of Physics, Lund, Sweden
 
  This paper describes the concept of a primary electron beam facility at CERN, to be used for dark gauge force and light dark matter searches. The electron beam is produced in three stages: A Linac accelerates electrons from a photo-cathode up to 3.5 GeV. This beam is injected into the Super Proton Synchrotron, SPS, and accelerated up to a maximum energy of 16 GeV. Finally, the accelerated beam is slowly extracted to an experiment, possibly followed by a fast dump of the remaining electrons to another beamline. The beam parameters are optimized using the requirements of the Light Dark Matter eXperiment, LDMX, as benchmark.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS098  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS099 The Development Programme of Cathodes and Electron Guns for the Hollow Electron Lenses of the High Luminosity LHC Project cathode, electron, gun, luminosity 1102
 
  • D. Perini, G. Gobbi
    CERN, Geneva, Switzerland
  • D.J. Crawford, J. Ruan, G. Stancari, L.R. Valerio
    Fermilab, Batavia, Illinois, USA
  • J. Feng, Z. Li, W. Shao, K. Zhang
    BVERI, Beijing, People’s Republic of China
  • W. Liu, J. Wang, Y. Wang, Y. Yang
    Beijing University of Technology, Beijing, People’s Republic of China
 
  Funding: Research supported by the HL-LHC project
The High Luminosity LHC project (HL-LHC) foresees the construction and installation of important new equipment to increase the performance of the LHC machine. The Hollow Electron Lens (HEL) is a promising system to control the beam halo. It improves the beam collimation system of the HL-LHC and mitigates possible equipment damage in case of failure scenarios from halo losses. The halo can store up to 30 MJ energy. The specifications for this new device are quite demanding. The source, an electron gun with an annular shaped cathode, has to deliver a current up to 5 A. This is five times higher than the current in the existing electron lenses in Fermi and Brookhaven national laboratories. This note describes the programme carried out to design and test high-perveance guns equipped with two types of high-performance scandate cathodes. The size of the final gun is now considerably smaller than the one of the first prototype, allowing a reduction of diameter and cost of the superconducting magnet system used to steer the electron beam. The tests carried out at FNAL, BVERI and BJUT demonstrated that the developed cathodes fulfil the specifications and can supply a 5 A fully Space Charge Limited (SCL) current.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS099  
About • paper received ※ 17 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS100 Transverse Emittance Measurement in the CERN Proton Synchrotron in View of Beam Production for the High-Luminosity LHC emittance, brightness, optics, betatron 1106
 
  • E. Senes, J. Emery, V. Forte, M.A. Fraser, A. Guerrero, A. Huschauer, F. Roncarolo, J.L. Sirvent, P.K. Skowroński, F. Tecker
    CERN, Geneva, Switzerland
 
  In the framework of the LHC Injectors Upgrade project the improvements required to achieve the parameters of the future beams for the High-Luminosity LHC are being studied and implemented. In order to deliver high brightness beams, control over the beam intensity and emittance is fundamental. Therefore, a highly accurate and reliable transverse emittance measurement is essential. Presently at the CERN Proton Synchrotron, the only operationally available emittance monitors not impacting the facility beam production are the flying wire scanners used to measure the circulating beam profile. The wire scanners will be replaced with a new generation in the next two years and a prototype is already installed. The prototype has been commissioned with beams featuring a wide range of intensities and emittances. This paper evaluates the performance of the prototype with respect to the present system via beam-based measurements. The transverse emittance measurement is discussed, considering the different potential error contributions to the measurement, such as knowledge of the machine optics and the dispersive contribution to the beam size.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS100  
About • paper received ※ 02 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS101 Study of the Transverse Emittance Blow-Up Along the Proton Synchrotron Booster Cycle During Wire Scanner Operation emittance, simulation, scattering, brightness 1110
 
  • A. Santamaría García, F. Antoniou, H. Bartosik, J.A. Briz Monago, G.P. Di Giovanni, A. Guerrero, J.R. Hunt, B. Mikulec, F. Roncarolo, E. Senes, V. Vlachoudis
    CERN, Geneva, Switzerland
  • E. Senes
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
 
  Transverse emittance measurements with wire scanners have been extensively studied across the accelerator complex at CERN due to their important role in characterizing the beam and their complicated modeling. In recent years, this topic has been of particular interest for the LHC Injectors Upgrade (LIU) project, where a tight transverse emittance blow-up budget between the Proton Synchrotron Booster (PSB) and the Proton Synchrotron (PS) is imposed to assure the required beam brightness for the High Luminosity LHC (HL-LHC). In order to maintain a high brightness beam, any source of emittance blow-up along the PSB cycle needs to be identified and mitigated. While wire scanners have been mostly used at extraction energy in the PSB, they can also operate along the energy cycle. The scattering of the protons with the wire increases considerably at lower energies, leading to an overestimation of the beam emittance. In this contribution we present the most recent studies, focusing on precisely quantifying the blow-up created by the flying wire with measurements in an optimized set-up and compared to FLUKA simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS101  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS106 Barrier Bucket Studies in the CERN PS cavity, LLRF, ISOL, kicker 1128
 
  • M. Vadai, A. Alomainy
    QMUL, London, United Kingdom
  • H. Damerau
    CERN, Geneva, Switzerland
 
  Part of the residual beam loss during the Multi-Turn Extraction (MTE) of fixed target beams from the CERN Proton Synchrotron (PS) can be attributed to kicker magnets switching while the beam is coasting with the main RF systems off before extraction. Generating a barrier bucket to deplete the longitudinal line density of the coasting beam during the kicker rise time can reduce these losses. Beam tests have been performed with an existing Finemet cavity in the PS, which is normally operated as a wideband feedback kicker. To drive the cavity, a beam synchronous waveform synthesizer based on programmable logic has been developed. It produces a pre-distorted signal which ideally results in a single period sinusoidal voltage pulse with programmable parameters at the gap of the cavity, once or multiple times per revolution. The modelling of the behavior of the power amplifier and the cavity is essential to achieve an anti-symmetric voltage pulse with little pre- and post-pulse ripple. The design of the beam-synchronous waveform generator is presented together with results from initial beam studies with the created barrier buckets in the PS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS106  
About • paper received ※ 18 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS107 Beam Manipulations With Barrier Buckets in the CERN PS extraction, synchrotron, operation, cavity 1132
 
  • M. Vadai, A. Alomainy
    QMUL, London, United Kingdom
  • H. Damerau, S.S. Gilardoni, M. Giovannozzi, A. Huschauer
    CERN, Geneva, Switzerland
 
  A barrier bucket scheme is being considered to reduce losses during the Multi-Turn Extraction from the CERN Proton Synchrotron to the Super Proton Synchrotron for the fixed-target physics programme. For effective loss reduction, the extraction kicker has to be triggered during the gap at the time of the longitudinal barrier. Initial beam studies at injection energy and with low intensity beams allowed to fully qualify an existing wide-band cavity to generate one or multiple beam synchronous pulses per turn. Bunch-length stretching and shortening have been exercised with barriers moving in azimuth with respect to the beam. The encouraging results obtained at injection energy guided the implementation of a de-bunching manipulation at higher energy to move all bunches into a single barrier bucket. Beam measurements at a momentum of 14GeV/c, varying intensity and the width of the barrier, demonstrate that a quasi-constant longitudinal line density and an almost fully depleted gap can be achieved at highest intensities. The contribution summarises the results of the beam studies at high energy together with some observations related to the Multi-Turn Extraction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS107  
About • paper received ※ 18 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS113 Sensitivity Analyses of All-Electric Storage Ring Designs alignment, closed-orbit, storage-ring, FEM 1148
 
  • M.J. Syphers, A. Narayanan
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: This work supported by the National Science Foundation Grant 1623691.
Future searches of electric dipole moments (EDMs) of fundamental particles can require electrostatic storage rings operating at the particle’s "magic momentum" whereby spin precessions out of the plane of the particle motion would be governed in principle only by the presence of an EDM. An EDM search for the proton, for example, requires a momentum of approximately 700 MeV/c and thus implies a half-kilometer circumference, where relatively modest electric fields are assumed. As no all-electric ring on this scale has been constructed before, the ability to produce precise radial fields for establishing a central orbit and precise electrostatic focusing fields about that orbit requires attention. Results of initial investigations into the feasibility of designing a proper system and the sensitivities of such a system to placement, mis-powering errors and other requirements on realistic electrostatic elements will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS113  
About • paper received ※ 09 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP004 Dynamic Pressure in the LHC - Influence of Ions Induced by Ionization of Residual Gas by Both the Proton Beam and the Electron Cloud electron, vacuum, experiment, ECR 1236
 
  • S. Bilgen, C. Bruni, B. Mercier, G. Sattonnay
    LAL, Orsay, France
  • V. Baglin
    CERN, Geneva, Switzerland
 
  Funding: work supported by FCC project (CERN & LAL-CNRS-IN2P3)
Ultra-High Vacuum is an essential requirement to reach design performances in high-energy particle colliders. For the future HL-LHC or FCC study, the understanding of the beam interactions with the vacuum chamber is fundamental to provide solutions to mitigate the pressure rises induced by electronic, photonic and ionic molecular desorption. Studies were performed on the ions, produced by molecular ionization generated by the proton beam and the electron cloud, and stimulating molecular desorption by the surface bombardment. In-situ measurements were carried out, on the LHC Vacuum Pilot Sector (VPS)*, to monitor the dynamic pressure, and to collect the electrical signals due to the electron cloud and to the ions interacting with the vacuum chamber walls. Experimental measurements of electrical signals recorded by copper electrodes were compared to calculations taking into account both the Secondary Electron Yield of copper and electron energy distribution. Finally, it seems that copper electrodes were not fully conditioned and an ion current could be estimated.
* THE LHC VACUUM PILOT-SECTOR PROJECT
B. Henrist, V. Baglin, G. Bregliozzi, and P. Chiggiato, CERN, Geneva, Switzerland
Proceedings of IPAC2014, Dresden, Germany.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP004  
About • paper received ※ 01 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP007 DYVACS (DYnamic VACuum Simulation) Code: Calculation of Gas Density Profiles in Presence of Electron Cloud electron, vacuum, photon, experiment 1244
 
  • G. Sattonnay, S. Bilgen, B. Mercier
    LAL, Orsay, France
  • V. Baglin
    CERN, Meyrin, Switzerland
 
  The computation of residual gas density profiles in particle accelerators is an essential task to optimize beam pipes and vacuum system design. In a hadron collider such as the LHC, the beam induces dynamic effects due to ion, electron and photon-stimulated gas desorption. The well-known VASCO* code developed at CERN in 2004 (and then PyVASCO**) is already used to estimate vacuum stability and density profiles in steady state conditions. Nevertheless, some phenomena are not taken into account such as the ionization of residual gas by the electron clouds. Therefore, we propose an upgrade of this code by introducing electron cloud maps*** to estimate the electron density and the ionization of gas by electrons, leading to an increase of both electron- and ion-induced desorption. Results obtained with the new code (called DYVACS for DYnamic VACuum Simulation) will be compared to pressure measurements in the VPS sector**** of the LHC.
* A. Rossi, Tech. Rep., LHC Proj. Note 341
** I. Aichinger, et al arXiv:1707.07525
*** T. Demma et al Phys. Rev. Acceler. and Beams 10, 114401 (2007)
**** B. Henrist et al, Proc. IPAC2014, Dresden
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP007  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP016 New Power Supply of Main Magnets for J-Parc Main Ring Upgrade controls, extraction, operation, quadrupole 1266
 
  • T. Shimogawa, Y. Kurimoto, K. Miura, Y. Morita, D. Naito
    KEK, Ibaraki, Japan
  • R. Sagawa
    Universal Engineering, Ibaraki-ken, Japan
 
  It is plans that the proton beam power provided to experimental facilities increase with shortening repetition period in J-PARC Main Ring (MR). As the shorten repetition period, the replacement of the power converters for main magnets in J-PARC MR is necessary to cope with issues such as power fluctuation of the main grid and increase of the output voltage. We have considered and developed the power converters with a 10 MW class which have the capacitor banks with the large capacitance. In the end of 2017, the first new power converter for a bending magnets family, which is the largest power converter in this upgrade plan, was installed in J-PARC site and the power test is ongoing using a dummy and a real load. In this report, the first new power converter for a bending magnets family in J-PARC MR is reported including the test results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP016  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP017 Design of Scanning Magnet Power Supply for HUST-PTF power-supply, target, controls, simulation 1269
 
  • X.Y. Li, Y.Y. Hu, Y.J. Lin, P. Tan, X.D. Tu, Y.C. Yu, L.G. Zhang, Z.Q. Zhang
    HUST, Wuhan, People’s Republic of China
 
  An active scanning proton therapy facility is being de-veloped at Huazhong University of Science and Technol-ogy(HUST). By controlling the deflection position of the beam with scanning magnets at different times, the superposition of discrete spot beams will form a specified shape and dose distribution conformal to the target tu-mour. A high precision and fast response power supply is required to deflect the beam quickly and accurately. In this paper, the TOSCA module in Opera3D is used to model and simulate the scanning magnets and to obtain the equivalent inductance of the magnet. Then the calcu-lated equivalent resistance inductance instead of the magnet is used to design the scanning magnet power supply. A high-voltage bridge is utilized to achieve fast response speed, and a low voltage bridge and PI control algorithm is adopted to ensure power supply accuracy. The Simulation result shows that the designed power supply meets the requirements of response speed and accuracy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP017  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP022 Research on Digital Scanning Power Supply Technology for Proton Therapy System power-supply, controls, scattering, radiation 1286
 
  • J. Huang, M. Fan, J. Yang, L.G. Zhang
    HUST, Wuhan, People’s Republic of China
  • T. Yu, C. Zuo
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People’s Republic of China
 
  Funding: Work supported by The National Key Research and Development Program of China, with grant No. 11505068
Proton has great advantages in the field of cancer radiotherapy because of its good characteristic of Bragg peak. HUST-PTF is a proton therapy facility under development in Huazhong University of science and technology. It delivers the beam to the patients with a pencil beam scanning nozzle. Scanning power supplies are placed in the nozzle of the proton therapy device and they are required high accuracy, high speed and high stability. In this paper,the structure diagram of HUST-PTF is shown. The parameters of scanning magnets and its power supply are introduced. Finally, some test results of power supply are shown. The next work will debug the control system of the scanning power supply and adjust it with the scanning magnet to see if it meets the design requirements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP022  
About • paper received ※ 19 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB112 JLEIC: A High Luminosity Polarized Electron-Ion Collider at Jefferson Lab electron, collider, luminosity, emittance 1916
 
  • Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
The recent National Academies of Science Review concluded the science questions that could be answered by an electron-ion collider are significant to advancing our understanding of the atomic nuclei that make up all visible matter in the universe. To meet this science need, a high luminosity polarized electron-ion collider (JLEIC) was envisioned at Jefferson Lab, based on the existing CEBAF recirculated SRF electron linac. Over the past 16 years, Jefferson Lab has been actively engaged in the design study and accelerator R&D for JLEIC, a comprehensive Pre-Conceptual Design Report has been completed recently. The JLEIC baseline design has also been continuously optimized including extending the CM energy to 100 GeV. In this paper, we present a summary of the JLEIC baseline design and also briefly discuss the accelerator R&D.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB112  
About • paper received ※ 07 June 2019       paper accepted ※ 07 June 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS005 Advanced Beam Transport Solutions for ELIMAIA: A User Oriented Laser-Driven Ion Beamlines laser, dipole, quadrupole, permanent-magnet 1936
 
  • F. Schillaci, D. Margarone, V. Scuderi
    ELI-BEAMS, Prague, Czech Republic
  • L. Andò, G.A.P. Cirrone, G. Cuttone, G. Milluzzo, J. Pipek, F. Romano, A.D. Russo
    INFN/LNS, Catania, Italy
  • M. Maggiore
    INFN/LNL, Legnaro (PD), Italy
 
  Laser-target acceleration represents a promising alternative to standard accelerators for several potential applications, especially medical ones, but some extreme features make laser-driven ion beams not directly usable. Therefore, a large effort has been recently devoted to development of beam-transport solutions to obtain controlled and reproducible beams. In this framework, a collaboration has been established between INFN-LNS (IT) and Eli-Beamlines-IoP (CZ) to realize a complete transport beam-line, named ELIMED, dedicated to the transport, diagnostics and dosimetry of laser-driven ion beams. The transport beamline is made by three sections: a set of high field gradient permanent magnet quadrupoles with large acceptance is used to collect and inject ions in the selection section; a magnetic chicane made of C-shaped resistive dipoles is able to select beams with high resolution and to work as an active energy modulator. The final beam shaping is done by two resistive quadrupoles. In this contribution the status of the beamline is described together with the tests performed with conventional accelerators at INFN-LNS. Feasibility study of possible upgrades are also reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS005  
About • paper received ※ 15 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS007 SPIRAL2 RFQ Bunch Length and Longitudinal Emittance Measurements. simulation, rfq, emittance, linac 1944
 
  • G. Normand, M. Di Giacomo, R. Ferdinand, O. Kamalou, J.-M. Lagniel, A. Savalle
    GANIL, Caen, France
  • D. Uriot
    CEA-DRF-IRFU, France
 
  The SPIRAL2 RFQ is designed to accelerate light and heavy ions up to A/Q=3 in CW mode to 0.75MeV/u. During its commissioning, the bunch lengths measured using a Beam Extension Monitor were compared with simulations for different ion species (Proton, Helium, Oxygen, Argon). The longitudinal emittances measured using the 3 gradients method and a multiparticule optimization method were also compared successfully to the expected ones.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS007  
About • paper received ※ 19 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS008 The Pulsing Chopper-Based System of the Arronax C70XP Cyclotron cyclotron, controls, solenoid, injection 1948
 
  • F. Poirier
    CNRS - DR17, RENNES, France
  • G. Blain, M. Fattahi, F. Haddad, J. Vandenborre
    SUBATECH, Nantes, France
  • F. Bulteau-harel, X. Goiziou, C. Koumeir, A. Letaeron, F. Poirier
    Cyclotron ARRONAX, Saint-Herblain, France
 
  Funding: This work is, in part, supported by a grant from the French National Agency for Research called "Investissements d’Avenir", Equipex Arronax-Plus noANR-11-EQPX-0004 and LabexIRON noANR-11-LABX-18-01.
The Arronax Public Interest Group (GIP) uses a multi-particle cyclotron to perform irradiation from a few pA up to hundreds of uA on various experiments and targets *. To support further low intensity usage and extend the beam time structure required for experiments such as pulsed experiments studies (radiolysis, proton therapeutic irradiation) and high intensity impact studies, it has been devised a pulsing system in the injection of the cyclotron. This system combines the use of a chopper, low frequency switch, and a control system based on the new extended EPICS network. This paper details the pulsing system adopted at Arronax, the last results in terms of time structure, various low intensity experimental studies performed with alpha and proton beams and the dedicated photon diagnostics.
* F.Poirier et al., "Studies and Upgrades on the C70 Cyclotron Arronax", CYC16, September 2016, TUD02.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS008  
About • paper received ※ 12 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS028 Extraction System of Upgraded AVF Cyclotron of RCNP extraction, cyclotron, septum, injection 1993
 
  • M. Nakao, M. Fukuda, S. Hara, T. Hara, K. Hatanaka, K. Kamakura, H. Kanda, H.W. Koay, S. Morinobu, Y. Morita, K. Nagayama, T. Saito, K. Takeda, H. Tamura, Y. Yasuda, T. Yorita
    RCNP, Osaka, Japan
 
  The AVF cyclotron of RCNP have been utilized for the purposes of basic research in physics, RI production for medicine and industrial applications as well as injector of ring cyclotron. Increasing beam intensity without decreasing beam quality can make improvements in all purposes. The improvement and repair of the AVF cyclotron are being carried out currently. We designed the new LEBT, injection, acceleration and extraction systems and we report on the extraction system here. High extraction efficiency is indispensable when increasing the beam intensity since beam loss causes activation of apparatus. New extraction system consists of deflector electrodes and two gradient correctors and probes. One gradient corrector causes a horizontally focus effect on the beam and the other causes horizontally defocus effect to avoid spreading of the beam with strong defocus effect caused by the main cyclotron magnetic field. Simulation study confirmed that 10 MeV proton, 65 MeV proton and 140 MeV alpha particles with 2 mm × 3 mrad could pass through the newly designed extraction system and the existing beam transport line. Beam simulation has been performed by utilizing SNOP* and OPAL** codes.
* SNOP V.L. Smirnov, S.B. Vorozhtsov, Proc. of RUPAC2012 TUPPB008 325 (2012)
** The OPAL (Object Oriented Parallel Accelerator Library) Framework, Andreas Adelmann et al., PSI-PR-08-02, (2008-2018)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS028  
About • paper received ※ 01 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS032 Radiation Design of New 30 kW Beam Dump of J-PARC Main Ring neutron, vacuum, radiation, site 2005
 
  • M.J. Shirakata, H. Kuboki, J. Takano
    KEK, Ibaraki, Japan
 
  The J-PARC Main Ring (MR) has a beam dump for the beam study and beam abort. Its present capacity is 7.5 kW in one hour average which is limited by radiation condition for the environments. The number of protons in one MR cycle is 2.6·10+14 in recent days, which corresponds to the beam power of 500 kW. As the top energy of J-PARC MR is 30 GeV, the number of available beam shots is restricted to less than twenty in one hour with such an intense beam. It imposes a big limitation on high power beam tuning and study. The number of protons is expected to become 3.3·10+14 for MW operation. Hence, an upgrade of the beam dump from 7.5 kW to 30 kW is planned. The radiation dose rate should be less than 0.25μSv/h on the ground. The backscattered neutron flux should be examined in the accelerator tunnel. The new dump design on radiation matters is described in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS032  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS036 Operation Status of J-PARC Rapid Cycling Synchrotron operation, vacuum, status, synchrotron 2020
 
  • J. Kamiya, K. Yamamoto
    JAEA/J-PARC, Tokai-mura, Japan
 
  The 3 GeV rapid cycling synchrotron (RCS) at the Japan Proton Accelerator Research Complex (J-PARC) provides more than 500 kW beams to the Material and Life Science Facility (MLF) and Main Ring (MR). In such a high-intensity hadron accelerator, even losing less than 0.1% of the beam can cause many problems. Such lost protons can cause serious radio-activation and accelerator component malfunctions. Therefore, we have conducted a beam study to achieve high-power operation. In addition, we have also maintained the accelerator components to enable stable operation. This paper reports the status of the J-PARC RCS over the last year.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS036  
About • paper received ※ 10 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS050 Design and Analysis of the Cold Cathode Ion Source for 200 MeV Superconducting Cyclotron cathode, ion-source, electron, cyclotron 2040
 
  • S.W. Xu
    USTC, Hefei, Anhui, People’s Republic of China
  • L. Calabretta
    INFN/LNS, Catania, Italy
  • G. Chen, M. Xu
    ASIPP, Hefei, People’s Republic of China
  • O. Karamyshev, G.A. Karamysheva, G. Shirkov
    JINR, Dubna, Moscow Region, Russia
 
  SC200 is a superconducting isochronous cyclotron which generates 200 MeV, 400 nA proton beam for particle therapy. The cold-cathode-type Penning ion gauge (PIG) ion source for the internal ion source of SC200 has been selected as an alternative and preliminary designed. In this paper, design of ion source and test bench are demonstrated. Currently, the properties of ion source have been simulated for a variety of electric field distributions and magnetic field strengths. The secondary electron emission in electromagnetic field has been simulated. It provides reference for the optimization design of arc chamber. In addition, the sample of cold-cathode-type ion source has been tested on the test bench and extracted beam intensity has been measured over 200 μA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS050  
About • paper received ※ 30 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS059 Conceptual Design of the SC230 Superconducting Cyclotron for Proton Therapy cyclotron, cavity, acceleration, simulation 2058
 
  • O. Karamyshev, S. Gurskiy, G.A. Karamysheva, D.V. Popov, G. Shirkov, S.G. Shirkov, V.L. Smirnov, S.B. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
 
  Physical design of the compact superconducting cyclotron SC230 (91.5MHz) has been performed. The cyclotron will deliver up to 230 MeV beam for proton therapy and medico-biological research. We have performed simulations of magnetic and accelerating systems of the SC230 cyclotron and specified the main parameters of the accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS059  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS060 Beam Dynamics Simulations in the Dubna SC230 Superconducting Cyclotron for Proton Therapy extraction, cyclotron, simulation, acceleration 2061
 
  • G.A. Karamysheva, S. Gurskiy, O. Karamyshev, D.V. Popov, G. Shirkov, S.G. Shirkov, V.L. Smirnov, S.B. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
  • V. Malinin
    JINR/DLNP, Dubna, Moscow region, Russia
 
  We present results of the beam dynamics simulation for the compact isochronous superconducting cyclotron SC230. We have performed beam tracking starting from the ion source. The extraction system scheme and results of beam extraction simulations are presented. The codes and methods used for beam tracking are briefly described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS060  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS068 Progress on Design Studies for the ISIS II Upgrade lattice, synchrotron, injection, neutron 2075
 
  • J.-B. Lagrange, D.J. Adams, C. Brown, H.V. Cavanagh, I.S.K. Gardner, P.T. Griffin-Hicks, B. Jones, D.J. Kelliher, A.P. Letchford, S. Machida, B.G. Pine, C.R. Prior, C.T. Rogers, J.W.G. Thomason, C.M. Warsop, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J. Pasternak, J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J. Pasternak, J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • G.H. Rees
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS, the spallation neutron source at the Rutherford Appleton Laboratory in the UK, uses a 50 Hz, 800 MeV proton RCS to provide a beam power of 0.2 MW, delivered in 0.4 us long pulses. Detailed studies are now under way for a major upgrade. Accelerator designs using FFAs, conventional accumulator and synchrotron rings are being considered for the required MW beam power. This paper summarises the scope of the different research incorporating results from recent target studies and user consultations. Preliminary results for Fixed Field Alternating gradient (FFA) rings and conventional rings located in the existing ISIS synchrotron hall are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS068  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS071 H+ and H Ion Beam Injectors at LANSCE: Beam Production Status and Planned Injector Upgrades ion-source, plasma, cathode, LEBT 2087
 
  • I.N. Draganic, D. Kleinjan, G. Rouleau
    LANL, Los Alamos, New Mexico, USA
 
  The Los Alamos Neutron Science Center operates with two 750 keV Cockcroft-Walton accelerators for simultaneous injection of H+ and H ion beams into a 800 MeV linear accelerator. The proton ion beam is produced using a duoplasmatron source and the H ion beam is formed with a cesiated, multi-cusp-field, surface converter ion source. An overview of ion injector status, recent low energy beam transport line optimizations and ion source performance improvements will be presented. To reduce long term operational risks and to improve existing LANSCE beam production for all facility users, new injector upgrades are underway: 1) replacing the H+ CW injector with a Radio-Frequency Quadruple accelerator and 2) increasing H ion beam brightness and extending source lifetime using the novel SNS RF negative ion source. The status of upgrade projects will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS071  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS109 Status of AC Dipole Project at Rhic Injectors for Polarized 3He, Update dipole, booster, resonance, vacuum 2177
 
  • K. Hock, C.W. Dawson, H. Huang, J.P. Jamilkowski, F. Méot, P. Oddo, M.C. Paniccia, Y. Tan, N. Tsoupas, J.E. Tuozzolo, K. Zeno
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
An ac dipole will be used for the efficient transport of polarized 3He in the AGS Booster as it is accelerated to |Gγ|=10.5. The ac dipole introduces a coherent vertical beam oscillation which allows preservation of polarization through the two intrinsic resonances Gγ=12-νy and Gγ=6+νy resonances, by full spin flipping. The AGS Booster ac dipole will be tested with protons crossing the Gγ=0+νy intrinsic resonance, which has ac dipole requirements similar to polarized 3He crossing the Gγ=12-νy resonance, providing a convenient proof of principle. This paper gives a status of the project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS109  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYYPLM2 The 2018 Heavy-Ion Run of the LHC luminosity, heavy-ion, optics, experiment 2258
 
  • J.M. Jowett, C. Bahamonde Castro, W. Bartmann, C. Bracco, R. Bruce, J. Coello, J. Dilly, S.D. Fartoukh, E. Fol, N. Fuster-Martínez, A. Garcia-Tabares, M. Hofer, E.B. Holzer, M.A. Jebramcik, J. Keintzel, A. Lechner, E.H. Maclean, L. Malina, T. Medvedeva, A. Mereghetti, T. H. B. Persson, B.Aa. Petersen, S. Redaelli, B. Salvachua, M. Schaumann, C. Schwick, M. Solfaroli, M.L. Spitznagel, H. Timko, R. Tomás, A. Wegscheider, J. Wenninger, D. Wollmann
    CERN, Geneva, Switzerland
  • D. Mirarchi
    The University of Manchester, The Photon Science Institute, Manchester, United Kingdom
 
  The fourth one-month Pb-Pb collision run brought LHC Run 2 to an end in December 2018. Following the tendency to reduce dependence on the configuration of the preceding proton run, a completely new optics cycle with the strongest ever focussing at the ALICE and LHCb experiments was designed and rapidly implemented, demonstrating the maturity of the collider’s operating modes. Beam-loss monitor thresholds were carefully adjusted to provide optimal protection from the multiple loss mechanisms in heavy-ion operation. A switch from a basic bunch-spacing of 100 ns to 75 ns was made as the beam became available from the injector chain. A new record luminosity, 6 times the original design and close to the operating value proposed for HL-LHC, provided validation of the strategy for mitigating quenches due to bound-free pair production (BFPP) at the interaction points of the ATLAS and CMS experiments. Most of the beam parameters of the HL-LHC Pb-Pb upgrade were attained during this run and the integrated luminosity goals for the first 10 years of LHC operation were substantially exceeded.  
slides icon Slides WEYYPLM2 [10.884 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEYYPLM2  
About • paper received ※ 08 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYYPLS1 Muon G-2: An Interplay between Beam Dynamics and a Muon Decay Experiment at the Precision Frontier experiment, storage-ring, detector, injection 2266
 
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: This work has been partially funded by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The Muon g-2 Experiment at Fermilab (E989) will use the higher proton flux delivered by the Fermilab accelerator complex and improvements to the experimental apparatus to measure the anomalous magnetic moment of the muon to unprecedented precision. In addition to the increased statistics beyond the most recent measurement, the experiment relies on detailed understanding of the beam dynamics in the experiment’s storage ring as well as the incoming muon beam properties for proper assessments of systematic errors in the data analysis. Modeling and measurements of beam and storage ring properties, from proton targeting to muon storage, produce a unique unification of particle beam physics with a high energy physics experiment. Here the beam dynamics issues and analysis techniques essential to the g-2 experiment are presented and discussed.
 
slides icon Slides WEYYPLS1 [12.990 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEYYPLS1  
About • paper received ※ 10 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP003 Beam Dynamics and Diagnostics for the High Energy Beam Transport Line of MINERVA Project at SCK•CEN septum, kicker, pick-up, linac 2304
 
  • H. Kraft, L. Perrot
    IPN, Orsay, France
 
  Funding: French research agency and technologies (ANRT), through the program CIFRE (2018/0080 ) supported by THALES AVS FRANCE SAS.
MYRRHA will be a research infrastructure highlighted by the first prototype of a sub-critical nuclear reactor driven by a 600 MeV particle accelerator (ADS). This project aims at exploring the transmutation of long-lived nuclear wastes. A first phase is planned to validate the reliability of a 100 MeV/4 mA Protons LINAC carrying the beam toward an ISOL facility, prefiguring the real MYRRHA demonstrator at 600 MeV. This project is called MINERVA. This paper presents the status of the beam dynamic studies for the high energy beam transport lines at 100 MeV. In agreement with the project require-ments, we describe the specificities of these beam lines for which it is needed to implement a fast kicker-septum. This system will separate the beam between two main lines: toward the beam dump or the ISOL facility. We also describe the studies on the Beam Position Monitor (BPM) selected for MYRRHA. Part of this work was sup-port by the MYRTE project of the European Union.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP003  
About • paper received ※ 24 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP007 Current Status of Slow Extraction from J-PARC Main Ring extraction, operation, experiment, radiation 2311
 
  • R. Muto, Y. Arakaki, T. Kimura, S. Murasugi, M. Okada, K. Okamura, T. Shimogawa, Y. Shirakabe, M. Tomizawa, T. Toyama, E. Yanaoka
    KEK, Ibaraki, Japan
  • A. Matsumura
    Nihon Advanced Technology Co., Ltd, Ibaraki, Nakagun, Tokaimura, Japan
 
  A 30 GeV proton beam accelerated in the J-PARC Main Ring (MR) is slowly extracted by the third integer resonant extraction and delivered to the hadron experimental hall. The slow extraction (SX) from the MR has unique characteristics that can be used to obtain a low beam loss rate. A dynamic bump scheme under achromatic condition drastically reduces beam hit rate on the septa devices. We have attained 50 kW SX operation at 5.2s cycle in current physics run. Slow extraction efficiency has been achieved to be very high, 99.5%. A beam instability during debunching with beam loss can be suppressed by a unique RF phase offset technique at MR injection. A spill duty factor indicating a uniformity for time structure of the extracted beam is typically 50%, which can be obtained by a feedback system using fast response quadrupoles, applying transverse RF field and so on. Future plans to improve present SX performances will be introduced.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP007  
About • paper received ※ 01 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP012 Beam Loss and the Stripping Efficiency Measurement for CSNS Injection System injection, operation, MMI, neutron 2329
 
  • M.Y. Huang, S. Wang, S.Y. Xu
    IHEP, Beijing, People’s Republic of China
 
  Funding: Work supported by National Natural Science Foundation of China (Project No. U1832210)
The injection beam loss is the main beam loss of the rapid cycling synchrotron (RCS) for the China Spallation Neutron Source (CSNS). After the optimization of injection system during the beam commissioning, the current injection beam loss for CSNS/RCS is approximately 1%. There are several sources of injection beam loss. In order to distinguish these different sources, the stripping efficiency of the main stripping foil should be studied and measured accurately. In this paper, a scheme for the accurate measurement of the stripping efficiency for CSNS will be proposed and studied. It can not only reduce the injection beam loss, but also be used to estimate the operation state and lifespan of the main stripping foil accurately. This method will be applied in future beam commissioning.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP012  
About • paper received ※ 30 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP014 Slow Extraction Study by Using Sextupole extraction, sextupole, synchrotron, resonance 2332
 
  • L. Huang, S. Wang
    IHEP, Beijing, People’s Republic of China
 
  The spill continuously extracted from synchrotron by using resonance sextupoles plays a key role in multidisciplinary application. The intensity of virtual sextupole and the spiral step for the typical synchrotron are obtained theoretically. A customized synchrotron of extraction components placed in dispersion section is designed and the tracking code of slow extraction is developed, thus the theoretical spiral step is comparative studied. To study the beam loss, three layouts of extraction are also designed based on the synchrotron. The result shows that the beam losses at extraction point are different for three cases and it is advantage to beam loss for extraction components placed in dispersion-free straight section.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP014  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP020 First Beam Transmission Measurements in Ion Source and LEBT at the European Spallation Source LEBT, ion-source, solenoid, MMI 2353
 
  • E. Laface
    ESS, Lund, Sweden
 
  The Ion Source and the Low Energy Beam Transport (LEBT) have been installed in the European Spallation Source tunnel, in Lund, Sweden, during the summer 2018. The first proton beam was extracted on September. In this paper we present the first set of measurements of protons transmission in combination with the analysis of the species (H+, H+2, H+3) extracted by the source. We show that our measurements are compatible with a fraction of 80\% of protons transported along the LEBT, as measured at the INFN-LNS, Catania, Italy during the commissioning in 2016-17. [1]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP020  
About • paper received ※ 12 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP024 Alternative Material Choices to Reduce Activation of Extraction Equipment extraction, shielding, radiation, vacuum 2363
 
  • D. Björkman, B. Balhan, J.C.C.M. Borburgh, L.S. Esposito, M.A. Fraser, B. Goddard, L.S. Stoel, H. Vincke
    CERN, Geneva, Switzerland
 
  At CERN, the Super Proton Synchrotron (SPS) is equipped with a resonant slow extraction system in Long Straight Section 2 (LSS2) towards the fixed target (FT) beam lines in the North Area. The extraction region provides the physics experiments with a quasi-DC flux of high-energy protons over a few seconds, which corresponds to tens of thousands of turns. The resonant slow extraction process provokes beam losses and is therefore the origin of radiation damage and the production of induced radioactivity in this region of the machine. This induced radioactivity imposed high constraints on the equipment design to be reliable to minimise the radiation exposure to personnel during machine maintenance. A detailed FLUKA model was developed in order to better understand the beam loss patterns, activation of the machine and to identify equipment components that could be optimised to reduce the residual dose related hazards. Simulations identified multiple alternative materials for extraction equipment components as well as shielding locations, which implementation could reduce residual activation hazards.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP024  
About • paper received ※ 26 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP026 Emittance Dilution from the CERN Proton Synchrotron Booster’s Extraction Kickers kicker, emittance, extraction, operation 2371
 
  • M.A. Fraser, S.C.P. Albright, F. Antoniou, G.P. Di Giovanni, Y. Dutheil, V. Forte, A. Huschauer, F. Roncarolo
    CERN, Meyrin, Switzerland
 
  Understanding the different sources of emittance dilution along the LHC injector chain is an important part of providing the high brightness proton beams demanded by the LHC Injectors Upgrade (LIU) project. In this context, the first beam-based measurements of the magnetic waveforms of the Proton Synchrotron Booster’s (PSB) extraction kickers were carried out and used to quantify the transverse emittance blow-up during extraction and transfer to the Proton Synchrotron (PS). In this contribution, the waveform measurement technique will be briefly outlined before the results and their implications for the LIU project and beam performance reach are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP026  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP027 Update on Beam Transfer Line Design for the SPS Beam Dump Facility target, experiment, quadrupole, extraction 2375
 
  • Y. Dutheil, J. Bauche, L.A. Dougherty, M.A. Fraser, B. Goddard, C. Heßler, V. Kain, J. Kurdej, J.A. Uythoven, F.M. Velotti
    CERN, Geneva, Switzerland
 
  The SPS Beam Dump Facility (BDF) being studied as part of the Physics Beyond Colliders (PBC) CERN project has recently reached an important milestone with the completion of the comprehensive feasibility study. The BDF is a proposed fixed target facility to be installed in the SPS North Area, to accommodate experiments such as SHiP (Search for Hidden Particles), which is most notably aiming at studying hidden sector particles. This experiment requires a high intensity slowly extracted 400 GeV proton beam with 4·1013 protons per 1 s spill to achieve 4·1019 protons on target per year. The extraction and transport scheme will make use of the first 600 m of the existing North Area extraction line. This contribution presents the status of the design work of the new transfer line and discusses the challenges identified. Aperture studies and failure scenarios are treated and the results discussed. In particular, interlock systems aiming at protecting critical components against the uncontrolled loss of the high energy proton beam are considered. We also present the latest results and implications of the design of a new laminated Lambertson splitter magnet to provide fast switching between the current North Area experiments and the BDF.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP027  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP028 Crystal for Slow Extraction Loss-Reduction of the SPS Electrostatic Septum extraction, experiment, ECR, alignment 2379
 
  • L.S. Esposito, P. Bestman, M.E.J. Butcher, M. Calviani, M. Di Castro, M. Donzé, M.A. Fraser, M. Garattini, Y. Gavrikov, S.S. Gilardoni, B. Goddard, V. Kain, J. Lendaro, A. Masi, M. Pari, J. Prieto, R. Rossi, W. Scandale, R. Seidenbinder, P. Serrano Galvez, L.S. Stoel, F.M. Velotti, V. Zhovkovska
    CERN, Geneva, Switzerland
  • F.M. Addesa, F. Iacoangeli
    INFN-Roma, Roma, Italy
  • A.G. Afonin, Y.A. Chesnokov, A.A. Durum, V.A. Maisheev, Yu.E. Sandomirskiy, A.A. Yanovich
    IHEP, Moscow Region, Russia
  • J.E. Borg, M. Garattini, G. Hall, T. James, M. Pesaresi
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • A.S. Denisov, Y. Gavrikov, Yu.M. Ivanov, M.A. Koznov, L.G. Malyarenko, V. Skorobogatov
    PNPI, Gatchina, Leningrad District, Russia
  • F. Galluccio
    INFN-Napoli, Napoli, Italy
  • A.D. Kovalenko, A.M. Taratin
    JINR, Dubna, Moscow Region, Russia
  • F. Murtas
    INFN/LNF, Frascati, Italy
  • A. Natochii
    LAL, Orsay, France
 
  The use of a bent crystal was investigated in order to reduce the losses at the CERN Super Proton Synchrotron (SPS) electrostatic septa (ZS) during the slow extraction of 400 GeV protons toward the North Area. The crystal, installed a few meters upstream the ZS, bends protons that would otherwise impinge on the ZS wires. Since particle deflection with good efficiency is achieved only when the crystal lattice is aligned within ~10 urad to the trajectory of the particles (at p = 400 GeV/c), a compact goniometer was built to allow the correct angular alignment of the crystal with respect to the incoming beam with a precision of few urad. In this paper, we report on the crystal features measured during a dedicated beam test by the UA9 experimental installation in the CERN H8 beam line. Details of the goniometer and its installation are also reported. The first results achieved during dedicated Machine Development (MD) sessions are finally presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP028  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP031 SPS Slow Extraction Losses and Activation: Update on Recent Improvements extraction, operation, octupole, alignment 2391
 
  • M.A. Fraser, B. Balhan, H. Bartosik, J. Bernhard, C. Bertone, D. Björkman, J.C.C.M. Borburgh, M. Brugger, N. Charitonidis, N. Conan, K. Cornelis, Y. Dutheil, L.S. Esposito, R. Garcia Alia, L. Gatignon, C.M. Genton, B. Goddard, C. Heßler, Y. Kadi, V. Kain, A. Mereghetti, M. Pari, M. Patecki, J. Prieto, S. Redaelli, F. Roncarolo, R. Rossi, W. Scandale, N. Solieri, J. Spanggaard, O. Stein, L.S. Stoel, F.M. Velotti, H. Vincke
    CERN, Meyrin, Switzerland
  • D. Barna, K. Brunner
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
 
  Annual high intensity requests of over 1019 protons on target (POT) from the CERN Super Proton Synchrotron (SPS) Fixed Target (FT) physics program continue, with the prospect of requests for even higher, unprecedented levels in the coming decade. A concerted and multifaceted R&D effort has been launched to understand and reduce the slow extraction induced radioactivation of the SPS and to anticipate future experimental proposals, such as SHiP* at the SPS Beam Dump Facility (BDF)**, which will request an additional 4·1019 POT per year. In this contribution, we report on operational improvements and recent advances that have been made to significantly reduce the slow extraction losses, by up to a factor of 3, with the deployment of new extraction concepts, including passive and active (thin, bent crystal) diffusers and extraction on the third-integer resonance with octupoles. In light of the successful tests of the prototype extraction loss reduction schemes, an outlook and implications for future SPS FT operation will be presented.
* A. Golutvin et al., Rep. CERN-SPSC-2015-016 (SPSC-P-350), CERN, Geneva, Switzerland, Apr. 2015.
** M. Lamont et al., Rep. CERN-PBC-REPORT-2018-001, CERN, Geneva, Switzerland, 11 Dec 2018.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP031  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP033 Slow Extraction Loss Reduction With Octupoles at the CERN SPS extraction, septum, octupole, multipole 2399
 
  • L.S. Stoel, H. Bartosik, M. Benedikt, M.A. Fraser, B. Goddard, V. Kain, F.M. Velotti
    CERN, Meyrin, Switzerland
 
  The powering of octupoles during third-integer resonant slow extraction has been studied and recently tested with beam at the CERN Super Proton Synchrotron (SPS) in order to increase the extraction efficiency and reduce the induced radioactivity of the extraction straight. The octupoles distort the particle trajectories in phase space in such a way that the extracted separatrix is folded, which decreases the particle density impinging the wires of the extraction septum at the expense of increasing the extracted beam emittance. During experimental SPS machine studies a reduction of over 40% in the specific (per extracted proton) beam loss measured at the extraction septum was demonstrated. In this paper, the prerequisite studies needed to safely but efficiently deploy the new extraction scheme in a limited time-frame are described, the experimental results are presented and an outlook is given towards the next steps to bring slow extraction with octupoles into routine operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP033  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP038 Combined MCNP/Turtle Simulation of the SINQ Beam Line at PSI-HIPA simulation, target, scattering, optics 2410
 
  • D. Reggiani, D.C. Kiselev, M. Seidel, V. Talanov, M. Wohlmuther
    PSI, Villigen PSI, Switzerland
 
  With a nominal beam power of nearly 1.4 MW, the PSI High Intensity Proton Accelerator (HIPA) complex is currently at the forefront of the high intensity frontier of particle accelerators. A key issue of such facilities is the minimization of beam losses that could lead to excessive activation of beam line components. At HIPA, the SINQ beam line is particularly subject to relatively large losses since it receives the highly divergent beam scattered off a 40 or 60 mm thick muon production graphite target (TE). So far, for HIPA, beam line simulations have been carried out only by means of the matrix multiplication codes TRANSPORT and TURTLE. Although very efficient, such tools do not allow a precise determination of beam losses whenever targets and collimators are substantially affecting the beam optics. A true understanding of how beam halo and the low momentum tail contribute to the measured losses can only be achieved by complementing the traditional simulations techniques by a tool that can transport beam particles in different materials and, at the same time, handle complex geometries like the ones of collimators situated in the beam line. Moreover, such an improved beam line simulation would give a significant contribution in evaluating the feasibility of the SINQ beam rotation system currently under study. In this paper we present a simulation of the SINQ beam line combining MCNP models of TE and collimator sections with the TURTLE computation of the magnetic channel.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP038  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP039 The New Injection Region of the CERN PS Booster injection, linac, emittance, booster 2414
 
  • W.J.M. Weterings, C. Bracco, L.O. Jorat, M. Meddahi, R. Noulibos, P. Van Trappen
    CERN, Geneva, Switzerland
 
  During the Long Shutdown 2 (LS2) at CERN, the new Linac4 (L4) accelerator will be connected to the PS Booster (PSB) to inject 160 MeV H beam into the 4 superposed PSB rings. In order to achieve this, we have designed, built and pre-assembled a completely new H charge-exchange injection chicane system, with a carbon stripping foil unit to convert the negative hydrogen ions into protons by stripping off the electrons. In parallel, we have built and installed a test stand in the L4 transfer line enabling us to gain valuable experience with operation of the stripping foil system and to evaluate different foil types during the L4 reliability runs. This paper describes the final design of the new PSB injection region and reports on the important test results obtained with the stripping foil test stand.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP039  
About • paper received ※ 10 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW009 DEVELOPMENT OF THE ELECTRON BEAM PROBE FOR HADRON SYNCHROTRONS. electron, simulation, hadron, experiment 2480
 
  • M. Droba, C. Hübinger, O. Meusel, H. Podlech, K.I. Thoma
    IAP, Frankfurt am Main, Germany
  • O.R. Jones, M. Wendt, F. Zimmermann
    CERN, Meyrin, Switzerland
 
  Funding: BMBF 05P18RFRB2
Non-invasive diagnostics is essential to get important information about intense hadron beams, e.g. the transverse beam profile, which is indispensable in order to attain high brilliance and luminosity for upgrades on present machines and for future projects. Furthermore, it can be used to optimise parameter settings in environment of the running machine. An electron beam probe (EBP) is a beam diagnostics instrument which scans a low energy, low current electron beam through a hadron beam and obtains information from the detected response. The electrons are shot perpendicular through the hadron beam to be examined, which causes deflection in the beam potential of the intense hadron bunch, that needs to be detected and further analysed. We propose to build the EBP scanning apparatus for synchrotrons under ultra-high vacuum condition. The results of multi particle simulations evaluating limitations the expected measurement potential and limitations are presented. This work will be performed in collaboration with CERN.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW009  
About • paper received ※ 11 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW030 Beam Profile Monitor for Slow Extracted Beam Using Multi-Layered Graphene at J-PARC target, electron, extraction, real-time 2532
 
  • Y. Hashimoto, Y. Hori, R. Muto, M. Tomizawa, T. Toyama, M. Uota
    KEK, Tokai, Ibaraki, Japan
  • M. Endo, H. Sakai
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • M. Murakami, K. Murashima, M. Tachibana, A. Tatami
    KANEKA, Osaka, Japan
 
  Extracted-beam profiles in slow extraction at J-PARC has been measured by using secondary electrons emitted from a target array made by multi-layered graphen, in real time during spill time of around 2 seconds. The target array consists of 20 ribbons with width of 1 mm, pitch of 2 mm, and thickness of 1.1 micron. Secondary-electron current at each channel is measured by a current amplifier having sensitivity more than 1 pA. These configuration produces useful information for beam dynamics in slow extraction. We have set this monitor at the entrance of a septum magnet, then we can also measure the last few-turns beam with the extracted beam simultaneously. We will discuss about features of this instrument and recent beam study with 51 kW extracted-beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW030  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW039 Multi-Ribbon Profile Monitor for High Power Proton Beam at J-PARC MR Abort Line target, extraction, emittance, electron 2561
 
  • K. Sato
    The University of Tokyo, Graduate School of Science, Tokyo, Japan
  • E. Hamada, Y. Hashimoto, S. Igarashi, T. Koseki, Y. Sato
    KEK, Tsukuba, Japan
 
  Japan Proton Accelerator Research Complex (J-PARC) Main Ring (MR), the world-class high intensity proton synchrotron, provides proton beam to two experimental facilities with two extraction modes: Fast extraction (FX) and Slow extraction (SX). The number of protons per pulse (ppp) in MR recorded the world highest value of 2.6×1014 in the FX mode. Now we are planning to increase the ppp further up to 3.3×1014 in near future. The beam profile is one of the most important parameters to discuss the high intensity beam dynamics in MR. Monitors using multi-wires / ribbons are effective to measure the beam profile with good accuracy and wide dynamic range. However, they cause significant beam losses by interactions with high-intensity circulating beam in synchrotrons. Recently, we installed new multi-ribbon profile monitor (MRPM) in an abort line in MR. The abort line is one of the extracted beam lines of the FX system. It has a quadrupole doublet which is called Abort Q and transports extracted beam to a beam dump. The FX system can extract the circulating beam in MR with an arbitrary energy. Performing the single-pass measurement with MRPM and changing the transfer matrix by sweeping field strength of Abort Q, the emittance of the extracted beam can be measured. In this paper, we present the design, manufacturing, and results of the first beam test of newly installed MRPM system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW039  
About • paper received ※ 01 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW040 Study of Beam Injection Efficiency in the Fixed Field Alternating Gradient Synchrotron at KURNS injection, FFAG, synchrotron, acceleration 2564
 
  • T. Uesugi, Y. Fuwa, Y. Ishi, Y. Kuriyama, Y. Mori, H. Okita, K. Suga
    Kyoto University, Research Reactor Institute, Osaka, Japan
 
  In the fixed field alternating gradient synchrotron in KURNS, there are serious beam losses. In order to evaluate the efficiencies of beam injection, rf capture, and extraction, separately, a well calibrated electro-static bunch monitor was installed to measure the circulating beam current at each energy region. This paper reports the design of the monitor, calibration, and first results of beam measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW040  
About • paper received ※ 16 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW052 A Rotation Method to Calibrate BPM Electric Offsets laser, site, radiation, instrumentation 2595
 
  • M.W. Wang, X. Guan, P.F. Ma, X.W. Wang, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • M.T. Qiu, D. Wang, Z.M. Wang
    NINT, Shannxi, People’s Republic of China
 
  Beam position monitor is a key instrument for machine commissioning. To measure beam position accurately, offline calibrations to acquire the sensitivity and offsets of the BPM are essential prerequisites. A new method to calibrate the BPM electric offset is proposed in this paper. By measuring the location variation of the BPM electric center after rotatingtheBPM180degrees, theBPMoffsetcanbederived. The method is more convenient, universal and accurate than the traditional methods. The method is successfully applied to calibrate the button BPM of Xi’an Proton Application Facility. The repetitive measurement error is 20.8 um.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW052  
About • paper received ※ 16 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW083 Quadrated Dielectric-Filled Reentrant Cavity Resonator as a Proton Beam Position Diagnostic cavity, dipole, pick-up, simulation 2676
 
  • S. Srinivasan, P.-A. Duperrex, J.M. Schippers
    PSI, Villigen PSI, Switzerland
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sk³odowska-Curie grant agreement No 675265
Low proton beam intensities (0.1-40 nA) are used for medical treatment of tumours at the PROSCAN facility in Paul Scherrer Institut (PSI). A cavity resonator using four quadrants operating in a dipole mode resonance has been developed to measure beam positions at these low intensities. The TM110 resonance frequency of 145.7 MHz is matched to the second harmonic of the beam pulse repetition rate (i.e.72.85 MHz). HFSS (High Frequency Structural Simulator) provides the BPM geometry and important parameters such as pickup position; dielectric dimensions etc. Comparison of test bench measurement and simulation provides good agreement. The measured position and signal sensitivity are limited by the noise, so that a position signal can be derived at beam intensities of at least 10 nA . We will discuss potential methods to increase the sensitivity. The dipole cavity resonator can be a promising candidate as a non-invasive position di-agnostic at the low proton beam intensities used in pro-ton therapy
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW083  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW084 Measuring Beamsize with the LHC Beam Gas Vertex Detector emittance, detector, injection, luminosity 2680
 
  • B. Würkner, A. Alexopoulos, C. Barschel, E. Bravin, G. Bregliozzi, N. Chritin, B. Dehning, M. Ferro-Luzzi, M. Giovannozzi, R. Jacobsson, L.K. Jensen, O.R. Jones, V. Kain, R. Kieffer, R. Matev, M.N. Rihl, V. Salustino Guimaraes, R. Veness, S. Vlachos
    CERN, Geneva, Switzerland
  • A. Bay, F. Blanc, S. Gianì, O. Girard, G.J. Haefeli, P. Hopchev, A. Kuonen, T. Nakada, O. Schneider, M. Tobin, Z. Xu
    EPFL, Lausanne, Switzerland
  • R. Greim, T. Kirn, S. Schael, M. Wlochal
    RWTH, Aachen, Germany
 
  The Beam Gas Vertex detector (BGV) is an innovative beam profile monitor being developed as part of the High Luminosity LHC (HL-LHC) project at CERN. The goal is to continually measure the transverse beam size by reconstructing beam-gas interaction vertices using high precision tracking detectors. To confirm the feasibility of such a device, a demonstrator based on eight modules of scintillating fiber detectors has been constructed, installed in the LHC and operated for the past 3 years. It will be shown that using the BGV the average transverse beam size can be obtained with a statistical accuracy of better than 5µm (for a gaussian beam with a σ of 200µm). This precision is obtained with an integration time of less than one minute. In addition, the BGV measures the size of individual bunches with a statistical accuracy of better than 5% within 5 minutes. The results obtained from all the data gathered over the past 3 years will be presented and compared to measurements from other beam profile monitors. Some ideas for improvements for the final HL-LHC instrument will also be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW084  
About • paper received ※ 10 May 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW088 Characterisation of Electro-Optic Pickups for High Bandwidth Diagnostics at the High Luminosity LHC pick-up, simulation, luminosity, ECR 2690
 
  • A. Arteche, A. Bosco, S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
  • S.E. Bashforth, A. Bosco, S.M. Gibson, I.S. Penman
    JAI, Egham, Surrey, United Kingdom
  • M. Krupa, T. Lefèvre
    CERN, Geneva, Switzerland
 
  Funding: Work supported by UK STFC grants ST/N001583/1, JAI at Royal Holloway University of London and CERN.
A high bandwidth electro-optical beam position monitor is under development for the High Luminosity LHC. A series of measurements of the electro-optic signals were previously obtained by an EO-BPM prototype installed in the SPS. This paper focuses on an advanced design that would further improve the sensitivity of the pick-up by optimising the shape of the metallic electrode mounted onto the crystal. The proposed upgraded electro-optic pickups significantly increase the image field profile of the passing bunch inside a lithium niobate crystal embedded within the pickup. This work is based on parametric studies, performed using CST particle studio, investigating various electro-optic (electrode and crystal) configurations. We present the expected performance of the different designs, alongside with their evaluation on a test bench, highlighting the most relevant choice for a prototype pick-up to be installed on LHC
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW088  
About • paper received ※ 22 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW089 Calibration of the AWAKE Electron Spectrometer with Electrons Derived from a Partially Stripped Ion Beam electron, quadrupole, plasma, experiment 2694
 
  • D. A. Cooke, M. Cascella, J. Chappell, S. Jolly, F. Keeble, M. Wing
    UCL, London, United Kingdom
  • R. Alemany-Fernández, J. Bauche, I. Gorgisyan, E. Gschwendtner, V. Kain, M.W. Krasny, S. Mazzoni, A.V. Petrenko
    CERN, Meyrin, Switzerland
  • P. La Penna, M. Quattri
    ESO, Garching bei Muenchen, Germany
 
  The energy distribution of electrons accelerated in the wake of a self-modulated proton beam is measured using a magnetic spectrometer at AWAKE. The spectrometer was commissioned in 2017 and ran successfully throughout 2018. Imaging properties of the spectrometer system are studied via a combination of simulations and linear optics models and validated using mono-energetic electrons stripped from the partially stripped ion beam in the AWAKE beamline at CERN. These and other details of the calibration and performance will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW089  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW090 Emittance Evolution of Low Energy Antiproton Beams in the Presence of Deceleration and Cooling emittance, electron, antiproton, closed-orbit 2697
 
  • J.R. Hunt, J. Resta-López, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C. Carli, B. Dupuy, D. Gamba
    CERN, Geneva, Switzerland
  • J.R. Hunt, J. Resta-López, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The commissioning of the Extra Low Energy Antiproton (ELENA) ring has been completed before the start of the second long shutdown (LS2) at CERN. First beams to an experiment in a new experimental zone have as well already been delivered. ELENA will begin distributing 100 keV cooled antiproton beams to all antimatter experiments in 2021. This contribution presents measurements made using a novel scraping algorithm capable of determining the emittance of non-Gaussian beams in the presence of dispersive effects. The emittance is sampled during various sections of the ELENA deceleration cycle, investigating the efficiency of the electron cooler and extracting additional information from the beam. The electron cooler is shown to effectively reduce the transverse phase space after blow-up during deceleration. The beam is characterised before extraction for the purpose of tracking and optimisation of the new electrostatic transfer lines currently being installed. Finally, the application of the scraping algorithm to other machines with a scraper located in a dispersive region is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW090  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB028 Electromagnetic Design of the Low Beta Cavities for the JAEA ADS cavity, SRF, linac, superconductivity 2870
 
  • B. Yee-Rendón, Y. Kondo, F.M. Maekawa, S.I. Meigo, J. Tamura
    JAEA/J-PARC, Tokai-mura, Japan
 
  The Japan Atomic Energy Agency (JAEA) is designing a superconducting CW proton linear accelerator for the ADS project. The superconducting region will use five types of radio frequency cavities. In the region from 2 to 180 MeV the acceleration will be done using Half Wave Resonator (HWR) and Single Spokes (SS) cavities. HWR cavities will accelerate the beam from 2 to 10 MeV with a geometrical beta of 0.08 and the SS ones will do from 10 to 180 MeV using two cavity families with geometrical betas of 0.16 and 0.43. The results of electromagnetic model design are presented and the comparison with similar cavities from other projects are included.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB028  
About • paper received ※ 19 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB044 Microphonics Simulation and Parameters Design of the SRF Cavities for CiADS cavity, simulation, linac, beam-loading 2903
 
  • J.Y. Ma, G. Huang
    IMP/CAS, Lanzhou, People’s Republic of China
 
  The CiADS (China initiative Accelerator Driven System) proton Linac is designed to accelerate CW beams of up to 500 MeV and 5mA, which is delivered to the spallation target. Since the beam power will eventually reach 2.5 MW, the beam loss should be restricted, which is sensitive to the SC cavity stability. On CW operating mode, the main perturbation to the cavity is microphonics. This paper will describe a set of tools developed to simulate performance of the cavity and its LLRF control system in order to ensure proper cavity operation under microphonics. The simulation tools describe a relationship between microphonics and the RF parameters. The microphonics effect to the cavity is simulated. The tolerated intensity of microphonics is determined by simulation, in order to satisfy the stability of amplitude and phase with 0.1% and 0.1 degree respectively.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB044  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB061 The Integration and RF Conditioning of the ESS Double-Spoke Prototype Cryomodule at FREIA cavity, vacuum, software, cryomodule 2952
 
  • H. Li, K. Fransson, K.J. Gajewski, L. Hermansson, A. Miyazaki, R.J.M.Y. Ruber, R. Santiago Kern
    Uppsala University, Uppsala, Sweden
 
  ESS, the European Spallation Source, will adopt a single family of double-spoke cavities for accelerating the proton beam from the normal conducting section to the first family of the elliptical superconducting cavities. They will be the first double-spoke cavities in the world to be commissioned for a high power proton accelerator. The first double-spoke cavity cryomodule for the ESS project is under high power test at Uppsala University. This paper presents the integration, RF conditioning and experience of this prototype cryomodule.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB061  
About • paper received ※ 26 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS002 Study of a Proton Therapy Beamline for Eye Treatment with Beam Delivery Simulation (BDSIM) and an In-House Tracking Code scattering, simulation, neutron, site 3088
 
  • E. Gnacadja, C. Hernalsteens, N. Pauly, R. Tesse
    ULB - FSA - SMN, Bruxelles, Belgium
  • S.T. Boogert, L.J. Nevay, W. Shields
    JAI, Egham, Surrey, United Kingdom
 
  The complete modelling of passive scattering proton therapy systems is challenging and requires simulation tools that have capabilities in both beam transport and in the detailed description of particle-matter interactions. Beam Delivery Simulation (BDSIM) allows the seamless simulation of the transport of particles in a beamline and its surrounding environment. A complete 3D model can be built from Geant4, CLHEP and ROOT to provide a complete analysis of the primary beam tracking. This capability is applied to the eye treatment proton therapy machine part of the IBA Proteus Plus product line. Those simulations are compared with a fast in-house particle tracking code with a semi-analytical model of Multiple Coulomb Scattering. The preliminary results leading to the detailed knowledge of the beamline performance are discussed in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS002  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS006 Modelization of an Injector With Machine Learning network, rfq, LEBT, solenoid 3096
 
  • M. Debongnie, M.A. Baylac, F. Bouly
    LPSC, Grenoble Cedex, France
  • N. Chauvin, D. Uriot
    CEA-IRFU, Gif-sur-Yvette, France
  • A. Gatera
    SCK•CEN, Mol, Belgium
  • T. Junquera
    Accelerators and Cryogenic Systems, Orsay, France
 
  Modern particle accelerator projects, such as MYRRHA, have very high stability and/or reliability requirements. To meet those, it is necessary to optimize or develop new methods for the control systems. One of the difficulties lies in the relatively long computation time of current beam dynamics codes. In this context, the very low computation time of neural network is of great attraction. However, a neural network has to be trained in order to be of any use. The training of a beam dynamic predictor uses a large dataset (experimental or simulated) that represents the dynamics over the parameter space of interest. Therefore, choosing the right training dataset is crucial for the quality of the neural network predictions. In this work, a study on the sampling choice for the training data is performed to train a neural network to predict the transmission of a beam through a low energy beam transport line and a Radiofrequency Quadrupole. We show and discuss the results obtained on training data set to model the IPHI and MYRRHA injectors.
https://myrrha.be/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS006  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS026 Generalised Scattering Module in SixTrack 5 scattering, target, lattice, experiment 3156
 
  • K.N. Sjobak
    University of Oslo, Oslo, Norway
  • H. Burkhardt, R. De Maria, V.K.B. Olsen
    CERN, Geneva, Switzerland
 
  Funding: Research Council of Norway, project 255196, and HL-LHC WP8
A generalised scattering module has recently been added to SixTrack. This module enables the use of arbitrary generators and target profiles. Presently, a simple model of elastic scattering and a coupling to Pythia8 have been implemented. This makes it possible to use SixTrack for studies of aperture losses and beam lifetime as a result of beam–beam scattering.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS026  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS031 The Beam Dynamics Design of the Proton Synchrotron Linear Injector for Proton Therapy DTL, rfq, linac, cavity 3167
 
  • J. Qiao, Y.H. Pu, X.C. Xie
    SINAP, Shanghai, People’s Republic of China
 
  A compact room-temperature injector is designed to accelerate 20 mA proton beam from 30 keV to 7.0 MeV for the purpose of Proton Synchrotron Linear Injector for Proton Therapy. The main feature of this linac injector is that the 4-vane Radio Frequency Quadrupole (RFQ) and the Drift Tube Linac (DTL) section are matched by one triplet and powered by one RF power source. The beam is matched from the first RFQ section to the second DTL section in traverse and longitudinal directions. The overall accelerating gradient of this design has reached up to 1.6 MV/m with transmission efficiency of 96%.This injector combines a 3 m long 4-vane RFQ from 30 keV to 3.0 MeV with a 0.8 m long H-type DTL section to 7.0 MeV. In general, the design meets the requirements of the Pro-ton Synchrotron and the Terminal treatment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS031  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS033 A High-performance Code for Beam Dynamics Simulation of Synchrotrons simulation, extraction, synchrotron, sextupole 3170
 
  • H.J. Yao, X. Guan, G.R. Li, P.F. Ma, X.W. Wang, Q. Zhang, S.X. Zheng
    TUB, Beijing, People’s Republic of China
 
  This paper introduces a high-performance code Li-track for beam dynamics simulation of synchrotrons. It is a parallel multi-particle tracking program written entirely in C++ and therefore has a high computational speed. The overall design of Li-track is based on object-oriented mode, and the implemented element model can be easily reused to build different synchrotron lattice. The symplectic integral algorithm is used to ensure there are no physical errors in a long-term simulation. This code has been used for the slow extraction simulation of XiPAF synchrotron and the results will be given in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS033  
About • paper received ※ 30 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS046 Monitoring and Modelling of the LHC Emittance and Luminosity Evolution in 2018 emittance, luminosity, operation, experiment 3212
 
  • S. Papadopoulou, F. Antoniou, I. Efthymiopoulos, M. Hostettler, G. Iadarola, N. Karastathis, S. Kostoglou, Y. Papaphilippou, G. Trad
    CERN, Geneva, Switzerland
 
  Operating at 6.5 TeV, the LHC surpassed the expectations and delivered an average of 66 fb−1 integrated luminosity to the two high luminosity experiments ATLAS and CMS by the end of 2018. In order to provide a continuous feedback to the machine coordination for further optimizing the performance, an automated tool for monitoring the main beam parameters and machine configurations, has been devised and extensively used. New features like the coupling between the two planes and effects of noise, were added to the numerical model used since 2016 to calculate the machine luminosity. Estimates, based both on simulations and on observed beam parameters, were reported fill-by-fill as well as in overall trends during the year. Highlights of the observations including the observed additional emittance blow up (on top of IBS, SR and elastic scattering) as well as additional losses (on top of the expected proton burn off) are presented for the 2018 data. Finally, cumulated integrated luminosity projections from the model for the entire 2018 data based on different degradation mechanisms are compared also with respect to the achieved luminosity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS046  
About • paper received ※ 17 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS068 A Novel S-Based Symplectic Algorithm for Tracking With Space Charge space-charge, simulation, resonance, optics 3279
 
  • J.P. Edelen, D.T. Abell, D.L. Bruhwiler, N.M. Cook, C.C. Hall, S.D. Webb
    RadiaSoft LLC, Boulder, Colorado, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC0011340
Traditional finite-difference particle-in-cell methods for modeling self-consistent space charge introduce non-Hamiltonian effects that make long-term tracking in storage rings unreliable. Foremost of these is so-called grid heating. Particularly for studies where the Hamiltonian invariants are critical for understanding the beam dynamics, such as nonlinear integrable optics, these spurious effects make interpreting simulation results difficult. To remedy this, we present a novel symplectic spectral space charge algorithm that is free of non-Hamiltonian numerical effects and, therefore, suitable for long-term tracking studies. Results presented here include a detailed study of the solver’s performance under a range of conditions. First, we show benchmarking and convergence studies for different particle shapes and different particle distributions. Then we demonstrate the solver’s ability to preserve Hamiltonian structure by studying the formation of space-charge driven resonances using both our algorithm and traditional PIC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS068  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS081 An Analytic Approach to Emittance Growth from the Beam-Beam Effect with Applications to the LHeC emittance, electron, GUI, collider 3307
 
  • E.A. Nissen
    JLab, Newport News, Virginia, USA
  • D. Schulte
    CERN, Meyrin, Switzerland
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, world-wide license to publish or reproduce this manuscript.
In colliders with asymmetric rigidity such as the proposed Large Hadron electron Collider, jitter in the weaker beam can cause emittance growth via coherent beam-beam interactions. The LHeC in this case would collide 7 TeV protons on 60 GeV electrons, which can be modeled using a weak-strong model. In this work we estimate the proton beam emittance growth by separating out the longitudinal angular kicks from an off-center bunch interaction and produce an analytic expression for the emittance growth per turn in systems like the LHeC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS081  
About • paper received ※ 01 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS083 Multipass Simulations of Space Charge Compensation using Electron Columns at IOTA space-charge, electron, simulation, cavity 3313
 
  • C.S. Park, E.G. Stern
    Fermilab, Batavia, Illinois, USA
  • S. Chattopadhyay, B.T. Freemire
    Northern Illinois University, DeKalb, Illinois, USA
  • C.E. Mitchell, R.D. Ryne
    LBNL, Berkeley, California, USA
 
  Defocusing repulsive forces due to self space charge fields lead to degradation of high-intensity particle beams. Being of particular concern for low- and medium-energy proton beams, they result in emittance growth, beam halo formation, and beam loss. They set stringent limits on the intensity of frontier accelerators; therefore, the mitigation of space charge effects is a crucial challenge to improve proton beam intensity. The space charge effects in a positively charged proton beam can be effectively compensated using negatively charged electron columns. In this paper, we present the results of simulations using Synergia of the Electron Column lattice for IOTA. Beam loss due to space charge effects and aperture restrictions have been studied, as well as bunch formation and matching using an adiabatic ramp of the RF cavity. The results show the need for space charge compensation, and provide the basis for integration of the Synergia and Warp codes in order to form a complete simulation of space charge compensation using an Electron Column in IOTA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS083  
About • paper received ※ 16 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS099 Passive Absorbers for Maximizing the Performance of the Mu2e-II Experiment target, experiment, solenoid, collimation 3345
 
  • J. Manczak
    IFIC, Valencia, Spain
  • J. Manczak
    Warsaw University, Warsaw, Poland
  • D.V. Neuffer, D. Stratakis
    Fermilab, Batavia, Illinois, USA
 
  The Fermilab’s Mu2e experiment is designed to search for Charged Lepton Flavour Violation in direct, neutrinoless conversion of muon into electron in the presence of a nucleus’ electromagnetic field. Quantity, which is going to be observed is the ratio between the rate of the above BSM (Beyond Standard Model) reaction and the rate of the standard muon capture on the nucleus. The measurement precision is expected to reach up to 10-17. Mu2e-II is the codename for the second phase of the experiment planned to run with the lower energy, higher intensity primary proton beam provided by PIP-II accelerator, currently under construction. The ionization cooling with a wedge absorber is introduced to Mu2e-II setup for potential increase in the number of low momentum muons reaching the target. The study is made into the position and size of the wedge inside the beamline using G4Beamline simulation framework. Results show an increase up to 12% for muons with momentum P below 30 MeV/c and 7% for muons with P<40 MeV/c when the beam is measured right after the wedge. Further studies are necessary to investigate how this gain can be delivered to the stopping target.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS099  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS106 Accelerator Optimization using Big Data Science Techniques plasma, experiment, radiation, electron 3370
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This project has received funding from STFC under grant reference ST/P006752/1.
Managing, analyzing and interpreting large, complex datasets and high rates of data flow is a growing challenge for many areas of science and industry. At particle accelerators and light sources, this data flow occurs both, in the experiments as well as the machine itself. The Liverpool Big Data Science Center for Doctoral Training (LIV. DAT) was established in 2017 to tackle the challenges in Monte Carlo modelling, high performance computing, machine learning and data analysis across particle, nuclear and astrophysics, as well as accelerator science. LIV. DAT is currently training 24 PHD students, making it one of the largest initiatives of this type in the world. This contribution presents research results obtained to date in projects that focus on the application of big data techniques within accelerator R&D.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS106  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS107 Designing the European Spallation Source Tuning Dump Beam Imaging System radiation, target, linac, optics 3374
 
  • M.G. Ibison, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • E. Adli, G. Christoforo, H. Gjersdal
    University of Oslo, Oslo, Norway
  • M.G. Ibison, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • T.J. Shea, C.A. Thomas
    ESS, Lund, Sweden
 
  Funding: In-Kind Agreement, ESS/Norway
The first section of the European Spallation Source (ESS) to receive high-energy protons when live operation begins will be the Tuning Dump beam-line. The dump line will be used during accelerator commissioning to tune the linac, and must accept the full range of ESS energies up to 2 GeV, from 5µs probe pulse to full 2.86ms pulse length, and beam sizes up to the 250 mm limit of the physical aperture, although the allowed pulse rate will be restricted by the thermal capacity of the dump. An imaging system has been developed to view remotely the transverse beam profile in the section immediately before the dump entrance, using insertable scintillator screens. This contribution presents the principal design parameters for this system, with particular reference to the techniques used in assessing the radiation and thermal environments and their impact on the selection of locations for the imaging cameras, and the specification of the mechanical screen actuators. The predicted optical performance of the system is also summarised.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS107  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXPLM1 LHC Injectors Upgrade Project: Towards New Territory Beam Parameters target, operation, injection, extraction 3385
 
  • M. Meddahi, R. Alemany-Fernández, H. Bartosik, G. Bellodi, J. Coupard, H. Damerau, G.P. Di Giovanni, F. B. Dos Santos Pedrosa, A. Funken, B. Goddard, K. Hanke, A. Huschauer, V. Kain, A.M. Lombardi, B. Mikulec, S. Prodon, G. Rumolo, R. Scrivens, E.N. Shaposhnikova
    CERN, Meyrin, Switzerland
 
  The LHC injectors Upgrade (LIU) project aims at increasing the intensity and brightness in the LHC injectors in order to match the challenging requirements of the High-Luminosity LHC (HL-LHC) project, while ensuring high availability and reliable operation of the injectors complex up to the end of the HL-LHC era (ca. 2035). This requires extensive hardware modifications and new beam dynamics solutions in the entire LHC proton and ion injection chains: the new Linac4, the Proton Synchrotron Booster, the Proton Synchrotron the Super Proton Synchrotron together with the ion PS injectors (the Linac3 and the Low Energy Ion Ring). All hardware modifications will be implemented during the 2019-2020 CERN accelerators shutdown. This talk would analyze the various project phases, share the lessons learned, and conclude on the expected beam parameter reach, together with the related risks.  
slides icon Slides THXPLM1 [20.029 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THXPLM1  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXPLS1 Review of Ion Therapy Machine and Future Perspective radiation, synchrotron, operation, controls 3391
 
  • K. Noda
    NIRS, Chiba-shi, Japan
 
  Cancer therapy with ion beams presents several advantages as compared to proton therapy or conventional radiation therapy but its diffusion is limited by the size and cost of the accelerator facility. The ion therapy facilities are presently in operation have generated important developments in particular to the gantry, beam delivery technique, and beam scanning system, while new treatment facilities being planned in United States, Europe, and Asia. This talk will present the current status of this field, as well as the future perspective.  
slides icon Slides THXPLS1 [26.303 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THXPLS1  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXXPLM1 NUCLOTRON Development for NICA Acceleration Complex acceleration, extraction, injection, target 3396
 
  • E. Syresin, N.N. Agapov, A.V. Alfeev, V. Andreev, A.A. Baldin, A.M. Bazanov, O.I. Brovko, V.V. Bugaev, A.V. Butenko, D.E. Donets, E.D. Donets, E.E. Donets, A.V. Eliseev, V.V. Fimushkin, B.V. Golovenskiy, E.V. Gorbachev, A. Govorov, E.V. Ivanov, V. Karpinsky, V. Kekelidze, H.G. Khodzhibagiyan, A. Kirichenko, V.V. Kobets, S.A. Kostromin, A.D. Kovalenko, O.S. Kozlov, K.A. Levterov, D.A. Lyuosev, A.A. Martynov, I.N. Meshkov, V.A. Mikhailov, V.A. Monchinsky, A. Nesterov, A.L. Osipenkov, D.O. Ponkin, S. Romanov, P.A. Rukojatkin, K.V. Shevchenko, I.V. Shirikov, A.A. Shurygin, A.O. Sidorin, V. Slepnev, A.V. Smirnov, G.V. Trubnikov, A. Tuzikov, B. Vasilishin
    JINR, Dubna, Moscow Region, Russia
  • A. Belov
    RAS/INR, Moscow, Russia
  • A.V. Philippov, V. Volkov
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  The Nuclotron is the basic facility of JINR used to generate beams of protons, polarized deuterons and protons, and multi charged ions in the energy range of up to 5.6 GeV/n. Polarized deuteron and proton beams were obtained at the intensity of 2×109 ppp and 108 ppp, respectively. The injection with RF adiabatic capture was used in two last Nuclotron runs where C6+, Xe42+, Kr26+ and Ar16+ ion beams were accelerated. The resonant stochastic extraction (RF knockout technique) was realized. The complex is now used for fixed target experiments with extracted beams and experiments with an internal target. In the near future, the Nuclotron will be the main synchrotron of the NICA collider facility being constructed at JINR. The installation in the Nuclotron of beam injection system from the Booster and of the fast extraction system in the Collider are required for its operation in the NICA complex. In the frame of the Nuclotron injection chain upgrade, a new light ion linac (LILac) for protons and ions will be built.  
slides icon Slides THXXPLM1 [10.806 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THXXPLM1  
About • paper received ※ 29 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXXPLS1 Status of the Carbon Commissioning and Roadmap Projects of the MedAustron Ion Therapy Center Accelerator MMI, synchrotron, injection, extraction 3404
 
  • M.T.F. Pivi, L. Adler, A. De Franco, F. Farinon, N. Gambino, G. Guidoboni, G. Kowarik, M. Kronberger, C. Kurfürst, H.T. Lau, S. Myalski, S. Nowak, C. Schmitzer, I. Strašík, P. Urschütz, A. Wastl
    EBG MedAustron, Wr. Neustadt, Austria
  • L.C. Penescu
    Abstract Landscapes, Montpellier, France
 
  The synchrotron-based MedAustron Particle Therapy Accelerator MAPTA located in Austria, delivers proton beams for medical treatment in the energy range 62-252 MeV/n since the year 2016 and is in preparation to provide C6+ carbon ions in the range 120-400 MeV/n to two of the three clinically used ion therapy irradiation rooms. In addition, carbon and proton beams, the latter with up to 800 MeV, will be provided to a fourth room dedicated to research. After beam generation and pre-acceleration to 7MeV, a 77m long synchrotron accelerates particles up to the requested energy for clinical treatment. A third-order resonance extraction method is used to extract the particles from the synchrotron in a slow controlled process and then transfer the particles to the 4 irradiation rooms with a spill time of 0.1-10 seconds to facilitate the control of the delivered radiation dose during clinical treatments. Presently, proton beams are delivered to the horizontal and vertical beam lines of three rooms. Commissioning of the accelerator with carbon ions has been completed for one beam line. In parallel, the installation of the beam line magnets for the proton Gantry is ongoing. A review of the accelerator and the status of the carbon commissioning, ongoing in parallel with clinical operations, and an outlook to future roadmap projects are presented.  
slides icon Slides THXXPLS1 [17.863 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THXXPLS1  
About • paper received ※ 19 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYYPLS2 Different Versions of Cryogenic Current Comparators with Magnetic Core for Beam Current Measurements cryogenics, shielding, pick-up, operation 3431
 
  • J. Golm, F. Schmidl, P. Seidel
    FSU Jena, Jena, Germany
  • H. De Gersem, N. Marsic, W.F.O. Müller
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M.F. Fernandes, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M.F. Fernandes, J. Tan, C.P. Welsch
    CERN, Geneva, Switzerland
  • M.F. Fernandes, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • D.M. Haider, F. Kurian, M. Schwickert, T. Sieber, T. Stöhlker
    GSI, Darmstadt, Germany
  • R. Neubert
    Thuringia Observatory Tautenburg, Tautenburg, Germany
  • M. Schmelz, R. Stolz, V. Zakosarenko
    IPHT, Jena, Germany
  • T. Stöhlker
    IOQ, Jena, Germany
  • T. Stöhlker, V. Tympel
    HIJ, Jena, Germany
  • V. Zakosarenko
    Supracon AG, Jena, Germany
 
  For more than 20 years Cryogenic Current Comparators (CCC) are used to measure the current of charged particle beams with low intensity (nA-range). The device was first established at GSI in Darmstadt and was improved over the past two decades by the cooperation of institutes in Jena, GSI and CERN. The improved versions differ in material parameters and electronics to increase the resolution and in dimensions in order to meet the requirements of the respective application. The device allows non-destructive measurements of the charged particle beam current. The azimuthal magnetic field which is generated by the beam current is detected by low temperature Superconducting Quantum Interference Device (SQUID) current sensors. A complex shaped superconductor cooled down to 4.2 K is used as magnetic shielding and a high permeability core serves as flux concentrator. Three versions of the CCC shall be presented in this work: (1) GSI-Pb-CCC which was running at GSI Darmstadt in a transfer line, (2) CERN-Nb-CCC currently installed in the Antiproton Decelerator at CERN and (3) GSI-Nb-CCC-XD which will be operating in the CRYRING at GSI 2019. Noise, signal and drift measurements were performed in the Cryo-Detector Lab at the University of Jena.  
slides icon Slides THYYPLS2 [4.344 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THYYPLS2  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAPLM3 2019 Nishikawa Tetsuji Prize Talk electron, collider, operation, experiment 3439
 
  • V.D. Shiltsev
    Fermilab, Batavia, Illinois, USA
 
  For his original work on electron lenses in synchrotron colliders, his outstanding contribution to the construction and operation of high-energy, high-luminosity hadron colliders and for his tireless leadership in the accelerator community.  
slides icon Slides THAPLM3 [17.631 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THAPLM3  
About • paper received ※ 19 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP011 Optics and Commissioning of the CNAO Experimental Beam Line experiment, radiation, MMI, optics 3472
 
  • S. Savazzi, E. Bressi, L. Falbo, V. Lante, C. Priano, M. G. Pullia
    CNAO Foundation, Pavia, Italy
  • P. Meliga
    University of Pavia, Pavia, Italy
 
  CNAO (National Centre for Oncological Hadronthera-py) in Pavia is one of the six centres worldwide in which hadrontherapy is administered with both protons and carbon ions. The main accelerator is a 25 m diameter synchrotron designed to accelerate carbon ions up to an energy of 400 MeV/u and protons up to an energy of 250 MeV. It was designed with three treatment rooms and an ’experimental room’ where research can be carried out. The room itself was built since the beginning, but the beam line was planned to be installed in a second moment in order to give priority to treatments. The beam line of the experimental room (XPR) is designed to be "general purpose", for research activities in different fields. In October 2018 the installation phase of the line was started and it ended in January 2019. In this paper a short description of the optics layout and commissioning strategy is given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP011  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP017 Design and Development of the Beamline System for a Proton Therapy Facility dipole, kicker, quadrupole, optics 3488
 
  • B. Qin, Q.S. Chen, M. Fan, K.F. Liu, X. Liu, J. Yang, Z.F. Zhao
    HUST, Wuhan, People’s Republic of China
  • W.J. Han, D. Li, Z.K. Liang
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People’s Republic of China
 
  Funding: This work was supported by The National Key Research and Development Program of China, with grant No. 2016YFC0105305; and by National Natural Science Foundation of China (11375068).
A proton therapy facility with multiple treatment rooms based on superconducting cyclotron scheme is under development in HUST (Huazhong University of Science and Technology). Design features and overview of development progress for the beamline system will be presented in this paper, which mainly focuses on prototype beamline magnets, a kicker magnet for fast beam switch, and the gantry beamline using image optics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP017  
About • paper received ※ 29 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP029 Design Study of a Compact Superconducting Cyclotron SC240 for Proton Therapy cyclotron, extraction, focusing, superconducting-magnet 3506
 
  • F. Jiang, G. Chen, Y. Chen, K.Z. Ding, J. Li, Y. Song, Z. Wu, J. Zhou
    ASIPP, Hefei, People’s Republic of China
  • Z. Zhong
    HFCIM, HeFei, People’s Republic of China
 
  Funding: National Natural Science Foundation of China under grant No. 11775258 & 11575237; International Scientific and Technological Co-operation Project of Anhui (grant No. 1704e1002207).
A compact AVF cyclotron of 240 MeV is under-designed for proton therapy. In order to reduce the size, the weight and operation cost, two superconducting coils are designed to implement the 2.35T central field. And the magnet weight is about 90 tons. The constant gap between the sectors is considered without deteriorating the beam stability. A dedicated design on extraction zone is performed to make the average field to close the isochronous field. The extraction efficiency is expected higher than 80%, by regulating the 1st harmonic field and arranging the extraction elements properly. In order to avoid the large scale of volume helium explosion in the quench, the low temperature superconducting coil using NbTi/Cu wire is cooled by 4K GM Cryocooler in a helium volume limiting design. The paper will present the physical design of this cyclotron.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP029  
About • paper received ※ 17 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP033 Beam Characterisation Using MEDIPIX3 and EBT3 Film at the Clatterbridge Proton Therapy Beamline detector, simulation, radiation, experiment 3510
 
  • J.S.L. Yap, J. Resta-López, R. Schnuerer, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N.J.S. Bal
    ASI, Amsterdam, The Netherlands
  • N.J.S. Bal, M. Fransen, F. Linde
    NIKHEF, Amsterdam, The Netherlands
  • A. Kacperek
    The Douglas Cyclotron, The Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, United Kingdom
  • J.L. Parsons
    Cancer Research Centre, University of Liverpool, Liverpool, United Kingdom
  • J. Resta-López, R. Schnuerer, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: EU FP7 grant agreement 215080, H2020 Marie Skłodowska-Curie grant agreement No 675265 - Optimization of Medical Accelerators (OMA) project and the Cockcroft Institute core grant STGA00076-01.
The Clatterbridge Cancer Centre (CCC) in the UK is a particle therapy facility providing treatment for ocular cancers using a 60 MeV passively scattered proton therapy beam. A model of the beamline using the Monte Carlo Simulation toolkit Geant4 has been developed for accurate characterisation of the beam. In order to validate the simulation, a study of the beam profiles along the delivery system is necessary. Beam profile measurements have been performed at multiple positions in the CCC beam line using both EBT3 GAFchromic film and Medipix3, a single quantum counting chip developed specifically for medical applications, typically used for x-ray detection. This is the first time its performance has been tested within a clinical, high proton flux environment. EBT3 is the current standard for conventional radiotherapy film dosimetry and was used to determine the dose and for correlation to fluence measured by Medipix3. The count rate linearity and doses recorded with Medipix3 were evaluated across the full range of available beam intensities, up to 3.12 x 1010 protons/s. The applicability of Medipix3 for proton therapy dosimetry is discussed and compared against the performance of EBT3.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP033  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP041 A Comparative Study of Biological Effects of Electrons and Co-60 Gamma Rays on pBR322 Plasmid DNA radiation, electron, experiment, controls 3533
 
  • K.L. Small, R.M. Jones
    UMAN, Manchester, United Kingdom
  • D. Angal-Kalinin, M. Surman
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A. Chadwick, N.T. Henthorn, K. Kirkby, M.J. Merchant, R. Morris, E. Santina
    The Christie NHS Foundation Trust, Manchester, United Kingdom
  • R. Edge
    Dalton Cumbrian Facility, University of Manchester, Cumbria, United Kingdom
  • R.J. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Very High-Energy Electron (VHEE) therapy is a rapidly developing field motivated by developments in high-gradient linacs. Advantages include sufficient penetration (>30 cm) for treatment of deep-seated tumours, measured insensitivity to inhomogeneities and rapid delivery time, making VHEE viable for treatment of heterogeneous regions, e.g. lung or bowel. Researchers at the University of Manchester and CERN have routinely produced accelerating gradients of ~100 MeV/m for the CLIC project. Suitable modification can result in a high gradient medical linac producing 250 MeV electrons within a treatment room. Radiobiological research for VHEE is vital to understand its use in radiotherapy and how it compares with conventional modalities. The goal of radiotherapy is to destroy tumour cells while sparing healthy cells, primarily by damaging DNA within the cancer cell. The study aim is to understand the fundamental interactions between VHEE and biological structures through plasmid irradiation studies - both computational, using the Monte Carlo GEANT4-DNA code, and experimental. Plasmid irradiation experiments have been carried out at using Co-60 gammas at the Dalton Cumbrian Facility and using 6-15 MeV electrons at the Christie NHS Foundation Trust to determine the type and quantity of damage caused to DNA by electron irradiation. These experiments are a world first in VHEE radiobiology, with further studies planned at higher energies using the CLARA and CLEAR facilities at Daresbury and CERN. These studies will also consider the effective dose range of VHEE with energy, as well as implications of damage on DNA. Research into this area of radiotherapy can provide a valuable addition to tools currently available to physicians in the fight against cancer.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP041  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP042 Performance Optimization of Ion Beam Therapy FEL, diagnostics, medical-accelerators, simulation 3537
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie grant agreement No 675265.
Proton beam therapy promises significant advantages over other forms of radiation therapy. However, to assure the best possible cancer care for patients further R&D into novel beam imaging and patient diagnostics, enhanced biological and physical models in Monte Carlo codes, as well as clinical facility design and optimization is required. Within the pan-European Optimization of Medical Accelerators (OMA) project collaborative research is being carried out between universities, research and clinical facilities, and industry in all of these areas. This contribution presents results from studies into low-intensity proton beam diagnostics, prompt gamma-based range verification in proton therapy, as well as prospects for a new proton irradiation facility for radiobiological measurements at an 18 MeV cyclotron within OMA. These results are then connected to the wider project aims of enhancing ion beam therapy. A summary of past and future events organised by the OMA consortium is also given.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP042  
About • paper received ※ 10 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP043 Non-Invasive Beam Monitoring Using LHCb VELO With 40 MeV Protons detector, cyclotron, experiment, monitoring 3541
 
  • R. Schnuerer, C.P. Welsch, J.S.L. Yap, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • T. Price
    Birmingham University, Birmingham, United Kingdom
  • R. Schnuerer, C.P. Welsch, J.S.L. Yap, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • T. Szumlak
    AGH, Cracow, Poland
 
  Funding: EU grant agreements 215080 and 675265, the Cockcroft Institute core Grant (ST/G008248/1), national agency: MNiSW and NCN (UMO-2015/17/B/ST2/02904) and the Grand Challenge Network+ (EP/N027167/1).
In proton beam therapy, knowledge of the detailed beam properties is essential to ensure effective dose delivery to the patient. In clinical practice, currently used interceptive ionisation chambers require daily calibration and suffer from slow response time. This contribution presents a new non-invasive method for dose online monitoring. It is based on the silicon multi-strip sensor LHCb VELO (VErtex LOcator), developed originally for the LHCb experiment at CERN. The semi-circular detector geometry offers the possibility to measure beam intensity through halo measurements without interfering with the beam core. Results from initial tests using this monitor in the 40 MeV proton beamline at the University of Birmingham, UK are shown. Synchronised with an ionisation chamber and the RF cyclotron frequency, VELO was used as online monitor by measuring the intensity in the proton beam halo and using this information as basis for 3D beam profiles. Experimental results are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP043  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP049 Sequential Excitation Scheme for Laser Stripping of Hydrogen Ion Beams laser, photon, electron, cavity 3558
 
  • Y. Liu, A.V. Aleksandrov, S.M. Cousineau, T.V. Gorlov, A. Rakhman
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
Resonant laser excitation of the electron in a hydrogen atom is essential to achieve high-efficiency laser stripping of hydrogen ion (H) beam. In the laser stripping experiments recently carried out at SNS, an ultra-violet (UV) laser was used to excite the electrons in 1-GeV hydrogen atoms from the n=1 state to the n=3 state. In this talk, we propose a sequential resonant excitation scheme by using two laser beams to excite electrons in a sequence of two steps: from the n=1 state to the n=2 state and from the n=2 state to any higher state. The advantages of the sequential resonant excitation scheme include (1) lower laser power requirement due to higher transition probability in the first excitation step and (2) possibility of shifting the stripping laser wavelength from UV regime to longer wavelengths. An application of the sequential resonant excitation scheme in combination with the double-resonance optical cavity technology to the laser stripping of 1.3-GeV H beam (envisioned in the SNS proton power upgrade project) will be described.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP049  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP051 Development of 211-Astatine Production in the Crocker Nuclear Laboratory Cyclotron target, cyclotron, operation, extraction 3564
 
  • E. Prebys
    Fermilab, Batavia, Illinois, USA
  • R.J. Abergel
    UCB, Berkeley, California, USA
  • W.H. Casey
    University of California at Davis (UC Davis), Davis, California, USA
  • D.A. Cebra
    UCD, Davis, California, USA
 
  There is a great deal of interest in the medical community in the use of the alpha-emitter 211-At as a therapeutic isotope. Among other things, its 7.2 hour half life is long enough to allow for recovery and labeling, but short enough to avoid long term activity in patients. Unfortunately, the only practical technique for its production is to bombard a 209-Bi target with a ~29 MeV alpha beam, so it is not accessible to commercial isotope production facilities, which all use fixed energy proton beams. The US Department of Energy is therefore supporting the development of a "University Isotope Network" (UIN) to satisfy this need. Our prposoal is to retrofit the variable-energy, multi-species cyclotron at the Crocker Nuclear Laboratory at the University of California Davis with an internal Bi-209 target, such that we can put at least 100 uA of 29 MeV alpha particles on target without concerns about extraction efficiency. Using very conservative assumptions, we are confident we will be able to produce 60 mCi of 211-At in solution in an eight hour shift, which includes setup, exposure, and chemical recovery. This poster will cover the design of the target, as well as the required chemical processing and reliability upgrades.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP051  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP054 Superconducting Dipole Design for a Proton Computed Tomography Gantry dipole, shielding, site, solenoid 3574
 
  • E. Oponowicz, H.L. Owen
    UMAN, Manchester, United Kingdom
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the MSC grant agreement No 675265, OMA - Optimization of Medical Accelerators.
Proton computed tomography aims to increase the accuracy of proton treatment planning by directly measuring proton stopping power. This imaging technique requires a proton beam of 330 MeV incident kinetic energy for adult patients. Employing superconducting technology in the beam delivery system allows it to be of comparable size to a conventional proton therapy gantry. A superconducting bending magnet design for a proton computed tomography gantry is proposed in this paper. The 30 deg, 3.9 T canted-cosine-theta dipole wound with NbTi wires is used to steer 330 MeV protons in an isocentric beam delivery system which rotates around the patient. Two methods of magnetic field shielding are compared in the context of proton therapy facility requirements; traditional passive shielding with an iron yoke placed around the magnet and an active shielding option utilising extra layers of the superconducting coil.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP054  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW001 Design of LhARA - Laser Hybrid Accelerator for Radiobiological Applications laser, focusing, target, experiment 3578
 
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • O. Ettlinger, C. Hunt, A. Kurup, K.R. Long, Z. Najmudin, J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • H.T. Lau
    EBG MedAustron, Wr. Neustadt, Austria
 
  Recent developments of using lasers interacting with targets for the creation of ion beams offer a possibility to provide beams for radiobiology research. This research aims to precisely study the radiobiological effectiveness of charged particles on various cultures of cells, which is essential to inform next generation hadron therapy treat-ment plans. The Laser hybrid Accelerator for Radiobio-logical Applications (LhARA) has been proposed to use a laser driven beam, which will be captured and focused using Gabor Lenses. The beam will be then energy and momentum selected to create a beam for in-vitro cells studies or sent to a post-accelerator ring to create beam for in-vivo studies. The optical design of LhARA is pre-sented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW001  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW004 The Use of an RF Undulator in the Design of an Accelerating Structure acceleration, focusing, undulator, simulation 3587
 
  • N.V. Avreline
    TRIUMF, Vancouver, Canada
  • P.G. Alexey, S.M. Polozov
    MEPhI, Moscow, Russia
 
  The idea of accelerating a beam in the accelerating structures based on an RF undulator poses great advantages in high current proton and ions accelerators. The accelerating structure based on an RF undulator uses a combinational wave that consists of the zeroth and the first harmonics for acceleration and focusing. This paper presents the development of this accelerating structure for acceleration of a beam. In particular, we show that this structure is an H-type resonator composed from five coupled sections.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW004  
About • paper received ※ 01 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW039 Moderation of Positive Muons by Helium Gas experiment, simulation, scattering, vacuum 3667
 
  • Y. Li, Y. Bao, R. Fan, X. Li, X. Tong
    IHEP, Beijing, People’s Republic of China
  • C.J. Ning, P.C. Wang
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  Funding: This work is supported by CAS, National Natural Science Foundation of China (Grant No. 11875281), and China Postdoctoral Science Foundation (Grant No. 2019M650845)
Efficiently creating beams of spin-polarized positive muons with energies between eV and keV (so-called slow muon beams) is important for further development and application of muon spin rotation, relaxation, and resonance techniques. One existing moderation method involves the use of wide-band-gap materials as moderators such as rare gas solids and solid nitrogen thin films (band-gap energy between 11 eV and 22 eV). Based on this moderation method, we have studied the use of helium gas as a moderator, with the goal of producing the slow muon beam more efficiently. Because of helium’s high (24.6 eV) ionization energy and because the cross section for muonium formation is suppressed in helium gas, we expect the production of slow muons using helium gas to be highly efficient.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW039  
About • paper received ※ 01 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW040 Decay Muon Beamline Design for EMuS target, solenoid, simulation, dipole 3670
 
  • Y.P. Song, Y. Bao, C. Meng, J.Y. Tang
    IHEP, Beijing, People’s Republic of China
  • Y.K. Chen, H.T. Jing
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  Funding: This work is supported by the Chinese Academy of Sciences.
The beamline design philosophies and simulation re-sults of the decay muon on Experimental Muon Source (EMuS) are reported in this paper. The beamline is com-posed of solenoids to keep large acceptance, and has been optimized for 45, 150 and 450 MeV/c decay muon re-spectively according to the π spectra optimization results from target station. Decay muons from 45 to 150 MeV/c are designed for μSR applications, and 150 to 450 MeV/c are designed for muon imaging, which is unique on the high momentum perspective. Negative muons from 45 to 150 MeV/c are designed for muonic applications. The momentum range of decay muon is tuneable between 45 and 450 MeV/c.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW040  
About • paper received ※ 01 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW041 The Potential of Heavy Ion Beams to Provide Secondary Muon/Neutrino Beam target, heavy-ion, solenoid, experiment 3673
 
  • H.-J. Cai, L.W. Chen, L. Yang, S. Zhang
    IMP/CAS, Lanzhou, People’s Republic of China
 
  This paper focuses on the exploration into the potential of heavy ion beams for the production of the charged pions/muons within different energy ranges which is widely needed for fundamental and applied research. The investigation is performed for the different kinds of beams involving 1H , 4He, 12C, 16O, 40Ar and 136Xe with medium energy within the range of 0.5~2.5 AGeV and high energy of 10 AGeV. Three kinds of typical target configurations, thin graphite plate, long tungsten rod and medium thickness nickel block are adopted. For comparison, graphite and nickel are also used for the long rod geometry. Basically, most of the conventional charged pion/muon beams production cases including surface muon, low energy decay muon, medium energy pion/muon for neutrino beam and highly forward energetic muon are involved and the feasibility of heavy ion beam for these cases is analyzed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW041  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW042 Applications of Compact Laser Plasma Accelerator (CLAPA) Beamline in Peking University laser, radiation, acceleration, plasma 3676
 
  • D.Y. Li, J.E. Chen, Y.X. Geng, X.Y. Hu, C.C. Li, Q. Liao, C. Lin, H.Y. Lu, W.J. Ma, M.J. Wu, X.H. Xu, X.Q. Yan, T. Yang, Y.Y. Zhao, J.G. Zhu, K. Zhu
    PKU, Beijing, People’s Republic of China
 
  Proton beam with energies less than 10 MeV, <1% energy spread, several to tens of pC charge can be stably produced and transported in Compact LAser Plasma Accelerator (CLAPA) at Peking University. The CLAPA beam line is an object-image point analysing system, which ensures the transmission efficiency and energy selection accuracy for proton beams with initial large divergence angle and energy spread. A spread-out Bragg peak (SOBP) is produced with high precision beam control, which is essential for cancer therapy. Other primary application experiments based on laser-accelerated proton beam have also been carried out, such as proton radiograph, stress testing for tungsten, irradiation of semi-conductor sensor to simulate the space irradiation environment and so on.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW042  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW045 A Simple Way to Introduce an Ajustable Femtosecond Pre-Pulse to Enhance Laser-Driven Proton Acceleration target, laser, plasma, acceleration 3686
 
  • P. J. Wang, Z.X. Cao, Y.X. Geng, D.F. Kong, C. Lin, J B. Liu, H.Y. Lu, W.J. Ma, Z.S. Mei, Z.P. Pan, Y.R. Shou, D. H. Wang, S.R. Xu, X.Q. Yan, Y.Y. Zhao
    PKU, Beijing, People’s Republic of China
  • G.Y. Gao
    LMU, Garching, Germany
 
  We demonstrate a simple way to introduce a femtosecond pre-pulse with adjustable intensity and delay without using an additional compressor to enhance laser-driven proton acceleration. Targets with different thicknesses were shoot at normal incidence by varying the pre-pulses. Experimental results show that significant enhancement on the proton energy can be achieved when the intensity of pre-pulse is optimized. Density profile of preplasma was obtained by bydrodynamic simulations. PIC simulations reveal that the preplasma generated by a femtosecond pre-pulse can increase the intensity of main pulse.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW045  
About • paper received ※ 30 April 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW049 Fabrication of On-Line Test Facility of Li-8 Beam at KOMAC target, optics, ion-source, linac 3697
 
  • J.J. Dang, Y.-S. Cho, H.S. Kim, H.-J. Kwon, P. Lee, Y.G. Song
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work has been supported through KOMAC operation fund of KAERI by MSIT and the NRF of Korea grant funded by the Korea government (MSIT) (No. NRF-2017M2A2A6A02071070).
A Li-8 beam facility has been developed at KOMAC. A target/ion source (TIS) was fabricated, and heating experiment of a target heater and a surface ion source was conducted at off-line test site. Also, beam optics components were developed. They are utilized in Li-8 beam line that electrostatic steerers to adjust misalignment of the beam, Einzel lens to focus beam and Wien filter to separate Li-8. Furthermore, a high-energy beta-ray telescope detector was developed as a dedicated beta-decay spectrometer for diagnostics of the Li-8 beam. The TIS, the beam optics and the beam diagnostics are installed in a target room (TR104) of the 100-MeV proton linac. An experiment of the proton beam transportation into TR104 and the TIS heating experiment were conducted separately. Finally, the on-line test of TIS has been conducted to generate Li-8 beam and examine the beam optics and the diagnostics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW049  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW050 Electromagnetic Field of a Charge Moving Through a Channel in Magnetized Plasma plasma, wakefield, vacuum, electromagnetic-fields 3700
 
  • A.A. Grigoreva, T.Yu. Alekhina, S.N. Galyamin, A.V. Tyukhtin, V.V. Vorobev
    Saint Petersburg State University, Saint Petersburg, Russia
 
  Funding: Work supported by Russian Science Foundation (Grant No. 18-72-10137).
Recent success in beam-driven plasma wakefiled acceleration scheme with two proton bunches propagating through a hollow plasma channel* stimulates the research activity in this area. In this report, we investigate possibilities for additional tuning the structure of the accelerating field by the external magnetic field applied. The structure of surface waves at the channel boundary is of interest, and special attention is paid to the field characteristics that are essential for the wakefield acceleration method (amplitude of the accelerating field, the structure of the deflecting field) and the possibilities of controlling these characteristics by means of the external field.
* Gessner S.J. et al. Proc. IPAC2016. THPPA01.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW050  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW053 Exploiting the Potential of ISOLDE at CERN (the EPIC Project) ISOL, experiment, target, storage-ring 3706
 
  • R. Catherall, T.J. Giles, G. Neyens
    CERN, Geneva, Switzerland
 
  The ISOLDE Facility at CERN * is the world’s leading facility for the production of radioactive ion beams (RIBs) using the ISOL (Isotope Separation On-Line) method, providing RIBs at energies from 30 keV to 10 MeV/u for a wide variety of experiments. To improve on its capacity to deliver RIBs further from stability, the EPIC project takes full advantage of recent investments by CERN to upgrade the LHC injectors **. In particular, the new Linac4 and the PS Booster upgrade allow expanding the scope of ISOLDE by providing higher radioactive ion beam intensities further from stability. Sharing the proton-beam between two target stations that simultaneously feed the low-energy and high-energy beam lines will more than double the annual available beam time for experiments. To take further advantage of enhanced beam time, CERN and the ISOLDE collaboration also aims to studies installing a storage ring behind the HIE-ISOLDE post-accelerator to allow the storage of cooled exotic ion beams and thus opening up new possibilities in the fields of astrophysics, fundamental symmetry studies, atomic physics and nuclear physics.
* B. Jonson, K. Riisager (2010), Scholarpedia, 5(7):9742 doi:10.4249/scholarpedia.9742
** K. Hanke et al.DOI: 10.18429/JACoW-IPAC2017-WEPVA036
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW053  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW054 Generation and Delivery of an Ultraviolet Laser Beam for the RF-Photoinjector of the Awake Electron Beam laser, electron, cathode, plasma 3709
 
  • V. Fedosseev, F. Batsch, C. Capelli, E. Chevallay, N. Chritin, S. Döbert, T. Feniet, F. Friebel, P. Gander, E. Granados, E. Gschwendtner, J. Hansen, C. Heßler, H. Panuganti, K.A. Szczurek
    CERN, Meyrin, Switzerland
  • M. Hüther, M. Martyanov, J.T. Moody, P. Muggli
    MPI-P, München, Germany
 
  In the AWAKE experiment, the electron beam is used to probe the proton-driven wakefield acceleration in a 10 m long rubidium vapor source. Electron bunches are produced using an RF-gun equipped with a Cs2Te photocathode illuminated by an ultraviolet (UV) laser pulse. To generate the UV laser beam a fraction of the infrared (IR) laser beam used for ionization of rubidium is extracted from the laser system, time-compressed to a picosecond scale and frequency tripled using nonlinear crystals. The transport line of the laser beam over the 20 m distance was built using rigid supports for mirrors and air-evacuated tube to prevent any possible beam pointing instabilities due to vibrations and air convection. Construction of the UV beam optical system enables appropriate beam shaping and control of its size and position on the cathode, as well as time delay with respect to the IR pulse, i.e. with respect to the plasma wakefield seeder. In this paper, we present the design of the UV beam line and results of its commissioning regarding IR/UV conversion, beam pointing stability, and means of beam control and monitoring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW054  
About • paper received ※ 14 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW062 The New CERN East Area Primary and Secondary Beams target, secondary-beams, radiation, optics 3730
 
  • E. Montbarbon, D. Banerjee, J. Bernhard, D. Brethoux, M. Brugger, B.D. Carlsen, N. Charitonidis, A. Ebn Rahmoun, S. Evrard, L. Gatignon, A. Gerbershagen, E. Harrouch, M. Lazzaroni, B. Rae, M.S. Rosenthal, M.W.U. Van Dijk
    CERN, Geneva, Switzerland
 
  The East Area is one of the intensely used facilities at CERN, now serving for over 56 years beams to more than 20 user teams and experiments for about 200 days of running each year. Besides primary proton and ion beams for the irradiation facilities IRRAD and CHARM, mixed secondary beams of hadrons, electrons and muons within a range of 0.5 GeV/c to 12 GeV/c are provided. The CERN management approved an upgrade and renovation of the full facility to meet reliably future beam test and physics requirements. We present new, flexible beam optics that will assure better purity of the secondary beams, even with the new possibility of highly pure electron, hadron or muon beams. The upgrade also includes a pulsed powering scheme with energy recovering power supplies and new laminated magnets that will reduce both power and cooling requirements. The renovation phase started already and first beams in the new facility will be delivered from 2021 on.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW062  
About • paper received ※ 03 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW072 Seeded Self-Modulation of Transversely Asymmetric Long Proton Beams in Plasma plasma, wakefield, focusing, simulation 3757
 
  • T. A. Perera, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • P. Muggli
    MPI-P, München, Germany
  • T. A. Perera, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work is supported by Science and Technology Facilities Council grant ST/P006752/1.
The AWAKE experiment at CERN recently demonstrated the world’s first acceleration of electrons in a proton-driven plasma wakefield accelerator*. Such accelerators show great promise for a new generation of linear e-p colliders using ~1-10 GV/m accelerating fields. Effectively driving a wakefield requires 100-fold self-modulation of the 12 cm Super Proton Synchrotron (SPS) proton beam using a plasma-driven process which must be care-fully controlled to saturation. Previous works have modelled this process assuming azimuthal symmetry of the transverse spatial and momentum profiles **, ***. In this work, 3D particle-in-cell simulations are used to model the self-modulation of such non-round beams. Implications of such effects for efficiently sustaining resonant wakefields are examined.
* Adli, E., et. al. (2018). Nature, 561(7723), 363-367.
** Lotov, K. V. (2015). Physics of Plasmas, 22(10), 103110.
*** Schroeder, C. B., et. al. (2011). Phys. Rev. Lett., 107(14).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW072  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB013 The ESSnuSB Target Station target, hadron, linac, electron 3831
 
  • E. Bouquerel, E. Baussan, L. D’Alessi, M. Dracos
    IPHC, Strasbourg Cedex 2, France
  • P. Cupial, M. Koziol
    AGH University of Science and Technology, Kraków, Poland
  • N. Vassilopoulos
    IHEP, Beijing, People’s Republic of China
 
  Funding: This project is supported by the COST Action CA15139 EuroNuNet. It has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777419.
The ESSνSB project, recently granted by the EU H2020 programme for a 4-year design study, proposes to use the protons produced by the linac (2 GeV, 5 MW) of the European Spallation Source (ESS) currently in construction in Lund (Sweden) to deliver a neutrino super beam. It follows the studies made by the FP7 Design Study EUROν[1] (2008-2012), regarding future neutrino facilities. The primary proton beam line completing the linear accelerator will consist of one or several accumulator rings and a proton beam switchyard. The secondary beam line producing neutrinos will consist of a four-horn/target station, a decay tunnel and a beam dump. A challenging component of this project is the enormous target heat-load generated by the 5 MW proton beam. In order to reduce this heat-load there will be four targets, which will be hit in sequence by the compressed proton pulses, thereby reducing the beam power on each target to 1.25 MW. Following the EUROν studies, a packed bed of titanium spheres cooled with helium gas has become the baseline design for a Super Beam based on a 2-5 GeV proton beam with a power of up to 1 MW per target, with other targets being considered for comparison. The hadron collection will be performed by four hadron collectors (magnetic horns), one for each target. Each of these target/hadron-collector assemblies will receive proton pulses three times more frequently than in present projects, and by an average beam power of 1.25 MW, which is twice as high as in present neutrino projects. The feasibility of the target/horn station for the ESSνSB project is discussed here.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB013  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB066 Beam Based Measurements of Relative RF Phase cavity, alignment, acceleration, booster 3950
 
  • S.C.P. Albright
    CERN, Geneva, Switzerland
  • M.D. Kuczynski
    LPCT, Vandoeuvre-lès-Nancy Cedex, France
 
  The ferrite loaded RF cavities of the CERN Proton Synchrotron Booster will be replaced with FinemetTM loaded cavities during Long Shutdown 2 2019-2020). To fully realise the potential of the new cavities, the relative RF phases must be aligned along the acceleration ramp, where the revolution frequency changes by nearly a factor of 2. A beam based method of measuring the relative phase between the cavities is desired to give the best possible compensation for the frequency dependent phase shift. In this paper we present an operationally viable method to measure the phase shift as a function of RF frequency. The relative phase of the RF cavities can be aligned to within a few degrees, giving an error on the voltage seen by the beam of less than 1%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB066  
About • paper received ※ 08 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB067 Time Varying RF Phase Noise for Longitudinal Emittance Blow-Up synchrotron, emittance, operation, extraction 3954
 
  • S.C.P. Albright
    CERN, Geneva, Switzerland
  • D. Quartullo
    Sapienza University of Rome, Rome, Italy
 
  RF phase noise was shown to be effective for controlled longitudinal emittance blow-up in the Proton Synchrotron Booster (PSB) at CERN during beam tests in 2017, with further developments in 2018. At CERN, RF phase noise is used operationally in the Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC). In this paper we show that it is suitable for operation with a variety of beam types in the PSB. In the PSB the synchrotron frequency changes by approximately a factor 4 during the 500 ms acceleration ramp, requiring large changes in the frequency band of the noise. During 2018, a new method of calculating the noise parameters has been demonstrated, which gives upper and lower bounds to the noise frequency band that are smoothly varying through the ramp. The new calculation method has been applied to operational beams accelerated in both single and double RF harmonics, the final results are presented here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB067  
About • paper received ※ 29 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB068 Upgrade of CERN’s PSB Digital Low-Level RF System HLRF, LLRF, controls, operation 3958
 
  • M.E. Angoletta, S.C.P. Albright, A. Findlay, M. Jaussi, J.C. Molendijk, N. Pittet
    CERN, Geneva, Switzerland
 
  The CERN PS Booster (PSB) is the first circular accelerator in the LHC proton injector chain. The upgrade of this four-ring machine is underway within the framework of the LHC Injectors Upgrade project. The existing digital Low-Level RF (LLRF) system will also be upgraded. This paper outlines the LLRF capabilities required, their implementation and the challenges involved. Results of tests carried out to prepare for the LLRF upgrade are given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB068  
About • paper received ※ 13 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB069 The New Digital Low-Level RF System for CERN’s Extra Low Energy Antiproton Machine LLRF, extraction, antiproton, operation 3962
 
  • M.E. Angoletta, M. Jaussi, J.C. Molendijk
    CERN, Geneva, Switzerland
 
  CERN’s new Extra Low ENergy Antiproton accelerator/decelerator (ELENA) completed its initial commissioning in 2018. This machine is equipped with a new digital Low-Level RF (LLRF) system that implements beam and cavity loops as well as longitudinal diagnostics. ELENA’s LLRF was instrumental for machine commissioning by decelerating some 1 E7 antiprotons from 5.3 MeV to 100 keV. Commissioning with H ions took also place. Challenges faced included coping with low beam intensity and the wide frequency swing. This paper gives an overview of the LLRF system capabilities and operation. Beam results achieved with both H ions and antiprotons are also shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB069  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB070 A New Digital Low-Level RF and Longitudinal Diagnostic System for CERN’s AD LLRF, diagnostics, antiproton, operation 3966
 
  • M.E. Angoletta, S.C.P. Albright, A. Findlay, M. Jaussi, J.C. Molendijk, V. R. Myklebust
    CERN, Geneva, Switzerland
 
  The Antiproton Decelerator (AD) has been routinely providing 3 E7 antiprotons since July 2000 at 100 MeV/c from 3.5 GeV/c. It will be refurbished during the Long Shutdown 2 (LS2) to provide reliable operation for the new Extra Low ENergy Antiproton (ELENA) ring. AD will be equipped with a new digital Low-Level RF (LLRF) system before its restart in 2021. Diagnostics to measure beam intensity, Δp/p and Schottky spectra will also be developed. This paper is an overview of the planned capabilities and implementations, as well as of the challenges to overcome.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB070  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB084 Run 2 Prompt Dose Distribution and Evolution at the Large Hadron Collider and Implications for Future Accelerator Operation operation, radiation, collimation, luminosity 4013
 
  • O. Stein, K. Bilko, M. Brugger, R. Garcia Alia, F.J. Harden, Y. Kadi, A. Lechner, G. Lerner
    CERN, Geneva, Switzerland
 
  During the operation of the Large Hadron Collider (LHC) small fractions of beam particles are lost, creating prompt radiation fields in the accelerator tunnels. Exposed electronics and accelerator components show lifetime degradation and stochastic Single Event Effects (SEEs) which can lead to faults and downtime of the LHC. Close to the experiments the radiation levels scale nicely with the integrated luminosity since the luminosity debris is the major contributor for creating the radiation fields in this area of the LHC. In the collimation regions it was expected that the radiation fields scale with the integrated beam intensities since the beams are continuously cleaned from particles which exceed the accelerator’s acceptance. The analysis of radiation data shows that the dose measurements in the collimation regions normalised with the integrated beam intensities for 2016 and 2017 are comparable. Against expectations, the intensity normalised radiation datasets of 2018 in these regions differ significantly from the previous years. Especially in the betatron collimation region the radiation levels are up to a factor 3 higher. The radiation levels in the collimation regions correlate with the levelling of beta-star and the crossing angle in the high luminosity experiments ATLAS and CMS. These increased normalised doses have direct implications on the expected dose levels during future LHC operation, including the High-Luminosity LHC (HL-LHC) upgrade.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB084  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB085 HiRadMat: A Facility Beyond the Realms of Materials Testing experiment, radiation, target, instrumentation 4016
 
  • F.J. Harden, A. Bouvard, N. Charitonidis, Y. Kadi
    CERN, Geneva, Switzerland
 
  The ever-expanding requirements of high-power targets and accelerator equipment has highlighted the need for facilities capable of accommodating experiments with a diverse range of objectives. HiRadMat, a High Radiation to Materials testing facility at CERN has, throughout operation, established itself as a global user facility capable of going beyond its initial design goals. Pulsed high energy, high intensity, proton beams have been delivered to experiments ranging from materials testing, detector’s prototype validation, radiation to electronics assessment and beam instrumentation. A 440 GeV/c proton beam is provided directly from the CERN SPS. Up to 288 bunches/pulse at a maximum pulse intensity of 3.5 x 1013 protons/pulse can be delivered. Through collaborative efforts, HiRadMat has developed into a state-of-the-art facility with improved in situ measurement routines, beam diagnostic systems and data acquisition techniques, offered to all users. This contribution summarises the recent experimental achievements, highlights previous facility enhancements and discusses potential future upgrades with particular focus on HiRadMat as a facility open to novel experiments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB085  
About • paper received ※ 29 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB113 Concept of Beam-Related Machine Protection for the Future Circular Collider machine-protect, beam-losses, extraction, collider 4085
 
  • Y.C. Nie, R. Schmidt, J.A. Uythoven, C. Wiesner, D. Wollmann, M. Zerlauth
    CERN, Meyrin, Switzerland
 
  In the Future Circular Collider (FCC) study, a proton-proton circular collider (FCC-hh) is considered with a stored beam energy 20 times higher than that of the LHC. Any uncontrolled release of such energy could potentially result in severe damage to the accelerator components. Machine protection of the FCC-hh is hence very important and challenging. With a machine-protection strategy similar to the LHC, FCC would require up to three turns to dump the beam synchronously after a failure detection. Due to several possible ultrafast failures, which could lead to significant beam losses in a few turns, it is important to further reduce the reaction time of the machine protection system (MPS) for the FCC. Reducing the detection time of a failure by using faster beam monitors, e.g. diamond detectors, can reduce the time between a beam loss and the beam dump request. Communication delay of the interlock system to the beam dumping system can be reduced by using a more direct signal path. More than one beam-free abort gap will shorten the time required for the synchronization between the abort gap and the extraction kicker. Different failure scenarios are classified according to the speed of the failure onset and the subsequent increase of induced beam losses. The critical failure modes, their potential mitigations and impacts on the design of the MPS are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB113  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB118 Study on the Influence of the Range Shifter Material in a Scanning Nozzle for Proton Therapy Based on Monte Carlo Method neutron, ECR, scattering, radiation 4100
 
  • Y.C. Yu, H.D. Guo, Y.Y. Hu, X.Y. Li, Y.J. Lin, P. Tan, X.D. Tu, L.G. Zhang
    HUST, Wuhan, People’s Republic of China
 
  Range shifter plays a key role in decreasing the energy of the proton beam to realize shallow tumours treatment with the scanning nozzle in Huazhong University of Science and Technology Proton Therapy Facility (HUST-PTF). To control the transverse scattering and decrease the damage to healthy tissue caused by secondary particle, influence of the range shifter material was studied. In this paper, the Monte Carlo software Geant4 and FLUKA are applied to analyse the transport process of proton beam in the range shifters made of six different materials: PMMA, Lexan, Lucite, Polyethylene, Polystyrene, and Wax. The beam spot sizes at the iso-center with or without range shifter was calculated for the HUST-PTF scanning nozzle. The relationship between the thickness of the range shifters of the six materials and the proton energy was obtained. The secondary neutron yield at the end of the nozzle was also analysed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB118  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS013 Further Designs of HOM Couplers for Superconducting 400 MHz RF Cavities cavity, HOM, simulation, impedance 4132
 
  • N.F. Petry, M. Busch, K. Kümpel, O. Meusel, H. Podlech
    IAP, Frankfurt am Main, Germany
 
  The Future Circular Collider (FCC) is one possible future successor of the Large Hadron Collider (LHC) at CERN. The proton-proton collider center-of-mass collision energy is set to 100 TeV with a beam current of 0.5 A. To achieve this energy a stable acceleration is critical and therefore higher order modes (HOM) need to be damped. HOM dampers, further characterized as couplers, need to fulfill several criteria to be efficient. As a first property the couplers should assure a longitudinal impedance of higher order modes of below 10 kW. Furthermore, the loaded Q-factor should be below 1000 and the corresponding R/Q value should be in the range of 10 Ω. Besides the Hook-type and Probe-type HOM coupler two additional designs were simulated. The recent results of the different couplers attached to a superconducting 400 MHz RF cavity will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS013  
About • paper received ※ 09 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS031 Simulations of the Activation of a Proton Therapy Facility Using a Complete Beamline Model With BDSIM simulation, neutron, shielding, experiment 4176
 
  • R. Tesse, E. Gnacadja, C. Hernalsteens, N. Pauly
    ULB - FSA - SMN, Bruxelles, Belgium
  • S.T. Boogert, L.J. Nevay, W. Shields
    JAI, Egham, Surrey, United Kingdom
  • C. Hernalsteens
    IBA, Louvain-la-Neuve, Belgium
 
  A detailed model of the IBA Proteus One compact gantry system has been created with BDSIM (Beam Delivery Simulation) that has been validated against experimental data. Results regarding activation studies have been obtained for the first time using seamless simulations of the transport of protons in the beamline and their interactions with the environment. The activation of the concrete shielding of the system is estimated after a period of 20 years of operation. These main results are presented and discussed in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS031  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS043 PRELIMINARY MAGNETIC FIELD CALCULATION OF A 30-DEGREE DIPOLE MAGNET dipole, simulation, operation, laser 4204
 
  • H. Liang, J. Huang, C. Jiang, T. Liu, B. Qin, K. Tang, J. Yang, J.Q. Ye
    HUST, Wuhan, People’s Republic of China
  • Y. Xie, T. Yu
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People’s Republic of China
 
  Preliminary design and field calculation of a 30-degree H-type dipole which can be applied to the beamline is introduced in this paper. According to the phys-ical requirements, 2D and 3D models are built and ana-lysed using OPERA. For achieving the magnetic field specifications, air slots are adopted, and trapezoidal shim on pole surface is used to improve the magnetic field error. Rogowski curve and harmonic shim at the pole end is used to reduce the integral magnetic field error and the higher order harmonic field error.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS043  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS065 Analysis on the Thermal Response to Beam Impedance Heating of the Post Ls2 Proton Synchrotron Beam Dump impedance, simulation, site, wakefield 4260
 
  • L. Teofili, F. Giordano, I. Lamas, F.-X. Nuiry, G. Romagnoli, B. Salvant
    CERN, Geneva, Switzerland
  • M. Marongiu, M. Migliorati
    Sapienza University of Rome, Rome, Italy
 
  The High Luminosity Large Hadron Collider (HL-LHC) and the LIU (LHC-Injection Upgrade) projects at CERN are upgrading the whole CERN accelerators chain, increasing beam brightness and intensity. In this scenario, some critical machine components have to be redesigned and rebuilt. Due to the increase in beam intensity, minimizing the electromagnetic interaction between the beam and the device is a crucial design task. Indeed, these interactions could lead to beam instabilities and excessive thermo-mechanical loadings in the device. In this context, this paper presents an example of multi-physics study to investigate the impedance related thermal effects. The analysis is performed on the conceptual design of the new proton synchrotron (PS) internal dump.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS065  
About • paper received ※ 26 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS066 Beam Impact Experiment of 440GeV/p Protons on Superconducting Wires and Tapes in a Cryogenic Environment experiment, interface, simulation, cryogenics 4264
 
  • A. Will, A. Bernhard, A.-S. Müller
    KIT, Karlsruhe, Germany
  • Y. Bastian, B. Bordini, M. Favre, B. Lindstrom, M. Mentink, A. Monteuuis, A. Oslandsbotn, R. Schmidt, A.P. Siemko, K. Stachon, M. P. Vaananen, A.P. Verweij, A. Will, D. Wollmann
    CERN, Geneva, Switzerland
  • M. Bonura, C. Senatore
    UNIGE, Geneva, Switzerland
  • A. Usoskin
    BRUKER HTS GmbH, Alzenau, Germany
 
  The superconducting magnets used in high energy particle accelerators such as CERN’s LHC can be impacted by the circulating beam in case of specific failure cases. This leads to interaction of the beam particles with the magnet components, like the superconducting coils, directly or via secondary particle showers. The interaction leads to energy deposition in the timescale of microseconds and induces large thermal gradients within the superconductors in the order of 100 K/mm. To investigate the effect on the superconductors, an experiment at CERN’s HiRadMat facility was designed and executed, exposing short samples of Nb-Ti and Nb3Sn strands as well as YBCO tape in a cryogenic environment to microsecond 440 GeV/p proton beams. The irradiated samples were extracted and are being analyzed for their superconducting properties, such as the critical transport current. This paper describes the experimental setup as well as the first results of the visual inspection of the samples.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS066  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS099 Fermilab Superconducting Nb3Sn High Field Magnet R&D Program dipole, operation, collider, status 4338
 
  • G. Velev, G. Ambrosio, E.Z. Barzi, V.V. Kashikhin, S. Krave, V. Lombardo, I. Novitski, S. Stoynev, D. Turrioni, X. Xu, A.V. Zlobin
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
Magnets based on the modern Nb3Sn conductor are the main candidates for future high-energy hadron colliders. Fermilab as part of the U.S. MDP executes an extensive R&D program on these high-field magnets. This program includes basic conductor and material R&D, quench per-formance studies, and building a meter-long high-field demonstrator. This paper summarizes the current status of the program including its recent results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS099  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXXPLM1 High Field Superconducting Magnet Program for Accelerators in China dipole, collider, superconducting-magnet, background 4359
 
  • Q.J. Xu
    IHEP, Beijing, People’s Republic of China
 
  High field superconducting magnets are crucial for high-energy particle accelerators. IHEP (institute for High Energy Physics, Beijing) is pursuing critical technologies R&D for future circular colliders like the Super Proton Proton Collider (SPPC). SPPC will need thousands of high field (12-20 T) superconducting magnets in around 20 years. A long term R&D roadmap of the advanced high field magnets has been made, aiming to push the technology frontier to the desired level, and a strong domestic collaboration is established, which brings together expertise of Chinese superconductivity community from fields of materials, physics, technology and engineering. The goal is to address prominent scientific and technological issues and challenges for high field applications of advanced superconducting materials. In the past year a model magnet with hybrid coils (NbTi and Nb3Sn ) has been manufactured and tested, reaching a dipole field above 10 T in the two apertures. A full Nb3Sn model has also been fabricated and tested with a coil made of iron based superconductor inserted in the center. An overview of the high field magnet program, R&D status and the future plans will be presented.  
slides icon Slides FRXXPLM1 [10.978 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-FRXXPLM1  
About • paper received ※ 20 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXXPLS2 Extinction Measurement of J-PARC MR with 8 GeV Proton Beam for the New Muon-to-Electron Conversion Search Experiment - COMET experiment, extraction, timing, kicker 4372
 
  • H. Nishiguchi, Y. Fukao, Y. Hashimoto, Y. Igarashi, S. Mihara, M. Moritsu, R. Muto, M. Tomizawa, K. Ueno
    KEK, Tsukuba, Japan
  • Y. Fujii
    Monash University, Faculty of Science, Clayton, Victoria, Australia
  • P. Sarin
    Indian Institute of Technology Bombay, Mumbai, India
  • F. Tamura
    JAEA/J-PARC, Tokai-mura, Japan
 
  Funding: This work is partially supported by JSPS (Japan Society for the Promotion of Science) : KAKENHI 15K13492 and 16H00876
At J-PARC, extraction tests of a 8GeV pulsed proton beam from Main Ring (MR) have been successfully completed by a team drawn from the Accelerator Laboratory Group and the COherent Muon to Electron Transition (COMET) Experimental Group. The COMET Experiment aims to find new physics beyond the Standard Model by searching for the coherent neutrinoless conversion of a muon to an electron in muonic atoms, so-called mu-e conversion. This requires an extremely clean pulsed beam, and development of this beam plays a key role in the pursuit of the highest level of sensitivity. This successful extraction test is the clearing of a major milestone for the forthcoming experiment. The goal of the extraction tests was to confirm the beam quality under the customized MR operation mode. The J-PARC MR usually accelerates the proton beam (at one bunch per 600ns) up to 30GeV. But in the test, the MR instead accelerates the proton beam (at one bunch per 1.2us) up to 8GeV. The number of protons leaking between proton bunches, so-called EXTINCTION, must be less than one for every 1010 protons in the bunch. Extraction tests in the customized mode were conducted in January and February 2018 and resulted in many successes. In this test, leakage protons between bunches was successfully reduced below the objective of 10−10 of the number of protons in a bunch. This is a great success to guarantee the quality of proton beam required by COMET experiment. In addition, the time development of proton leakage was also precisely studied with several RF settings which enables us to further improve the extinction. In this paper, the result of extinction measurement and future prospect of beam extinction improvement is presented in addition to the detailed description of customized MR operation.
 
slides icon Slides FRXXPLS2 [13.427 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-FRXXPLS2  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXPLM1 Operations Experience of SNS at 1.4MW and Upgrade Plans for Doubling the Beam Power target, operation, neutron, cryomodule 4380
 
  • J. Galambos
    ORNL, Oak Ridge, Tennessee, USA
 
  In 2018, the SNS begins operation at the design proton beam power of 1.4 MW. This talk will present the critical technical challenges that were overcome in order to take the final step in beam power with a higher than 90% reliability. In addition, the future project of the SNS for doubling the beam power from 1.4 MW to 2.8 MW and construction of second target station will be discussed.  
slides icon Slides FRXPLM1 [22.095 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-FRXPLM1  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)