Keyword: shielding
Paper Title Other Keywords Page
MOPGW001 Design Review of Bellows RF-Shielding Types and New Concepts for Sirius storage-ring, wakefield, HOM, impedance 53
 
  • H.O.C. Duarte, P.P.S. Freitas, A.R.D. Rodrigues, R.M. Seraphim, T.M. da Rocha
    LNLS, Campinas, Brazil
 
  Large amounts of bellows in an accelerator justify the importance of simplifying the machining and assembling processes of their RF shield. Such quantity also makes this component one of the main contributors for a machine impedance budget. On the other hand, low impedance designs tend to complicate the mechanical aspects. Applied to Sirius round vacuum chamber of 24 mm inner diameter, the omega-strip and comb-type bellows concepts are compared with new proposed designs. In such comparison, the aforementioned aspects, wakefield losses and prototyping experiences are presented in this work.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW001  
About • paper received ※ 16 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW082 Mitigation of Stray Magnetic Field Effects in CLIC with Passive Shielding feedback, collider, simulation, hadron 293
 
  • C. Gohil, N. Blaskovic Kraljevic, D. Schulte
    CERN, Meyrin, Switzerland
  • P. Burrows
    JAI, Oxford, United Kingdom
 
  Simulations have shown the Compact Linear Collider (CLIC) is sensitive to external dynamic magnetic fields (stray fields) to the nT level. Due to these extremely tight tolerances, mitigation techniques will be required to prevent performance loss. A passive shielding technique is envisaged as a potential solution. A model for passive shielding is presented along with calculations of its transfer function. Measurements of the transfer function of a promising material (mu-metal) that can be used for passive shielding are presented. The validity of passive shielding models in small amplitude magnetic fields is also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW082  
About • paper received ※ 01 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW124 Coherent Synchrotron Radiation Simulation for CBETA simulation, linac, lattice, radiation 406
 
  • W. Lou, C.M. Gulliford, G.H. Hoffstaetter, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • C.E. Mayes
    SLAC, Menlo Park, California, USA
  • N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  CBETA is an energy recovery linac accelerating from 6 MeV to 150 MeV in four linac passes, using a single return beamline accepting all energies from 42 to 150 MeV. While CBETA gives promise to deliver unprecedentedly high beam current with simultaneously small emittance, Coherent Synchrotron Radiation (CSR) can pose detrimental effect on the beam at high bunch charges and short bunch lengths. To investigate the CSR effects on CBETA, we used the established simulation code Bmad to track a bunch with different parameters. We found that CSR causes phase space dilution, and the effect becomes more significant as the bunch charge and recirculation pass increase. Potential ways to mitigate the effect involving vacuum chamber shielding and increasing bunch length are being investigated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW124  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP039 Developments in the Experimental Interaction Regions of the High Energy LHC dipole, luminosity, dynamic-aperture, beam-beam-effects 532
 
  • L. van Riesen-Haupt, J.L. Abelleira
    University of Oxford, Oxford, United Kingdom
  • J.L. Abelleira, E. Cruz Alaniz
    JAI, Oxford, United Kingdom
  • J. Barranco García, T. Pieloni, C. Tambasco
    EPFL, Lausanne, Switzerland
  • M. Hofer, J. Keintzel, R. Tomás, F. Zimmermann
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the Swiss institute for Accelerator Research and Technology , CHART.
The High Energy LHC (HE-LHC) aims to collide 13.5 TeV protons in two high luminosity experiments and two low luminosity experiments. In the following, the recent updates in the two high luminosity experimental interaction regions (EIR) of the HE-LHC will be illustrated. These EIR aim to focus the beams to a β* of 0.45 m at the interaction point (IP) to achieve a lifetime integrated luminosity of 10 ab-1. On top of the triplet optics designed to achieve this, it will present energy deposition driven separation dipole designs, optics solutions for the matching section and dispersion suppressors as well as studies involving the integration into the lattice options. In particular it will outline geometric considerations, spurious dispersion suppression as well as results from dynamic aperture studies.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP039  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS110 FLUKA-MARS15 Simulations To Optimize the Fermilab PIP-II Movable Beam Absorber linac, MMI, radiation, simulation 1136
 
  • L. Lari, F.G. Garcia, Y. He, I. Kourbanis, N.V. Mokhov, E. Pozdeyev, I.L. Rakhno
    Fermilab, Batavia, Illinois, USA
  • F. Cerutti, L.S. Esposito, L. Lari
    CERN, Meyrin, Switzerland
 
  PIP-II is the Fermilab’s flagship project to provide powerful, high-intensity proton beams to the laboratory’s experiments. The heart of the PIP-II project is an H 800 MeV superconducting linear accelerator. In order to commission the beam and operate safely the linac, several constraints were evaluated. The design of a movable 5 kW beam absorber was finalized to allow staged beam commissioning in different linac locations. Prompt and residual radiation levels were calculated, and radiation shields were optimized to keep those values within the acceptable levels in the areas surrounding beam absorber. Monte Carlo calculations with FLUKA and MARS15 codes are presented in the paper to support these studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS110  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP033 Design of the Neutron Imaging Differential Pumping Line at LLNL neutron, target, vacuum, simulation 1312
 
  • J.A. Caggiano, D. Castronovo, P. Fitsos, D.J. Gibson, J. Hall, M.S. Johnson, R.A. Marsh, B. Rusnak
    LLNL, Livermore, California, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The neutron imaging system at LLNL is a radiographic capability for imaging objects with fast, quasi-monoenergetic neutrons at ≤1mm spatial resolution. The neutron production source is a deuteron beam (4 or 7 MeV) incident upon a rotating, high-pressure, windowless, pure-deuterium gas target. The windowless nature of the target combined with the high pressure leads to significant gas leakage upstream of the neutron production target. This leakage degrades the imaging quality by (1) increasing the depth-of-field blurring and (2) increasing the beam diameter and divergence in the transverse direction via angular straggling in the residual gas. To mitigate these effects, and guided by bench tests and simulations, we designed a differential pumping line (DPL) to ensure the highest quality imaging system. The system consists of three primary stages (chambers), each separated by carefully shaped apertures. These apertures can be long and thin with low-angle tapers due to the high quality of the beam optics (convergence at the target < 5mrad) and low emittance of the beam (~5 pi mm-mrad). The primary cascaded roots pumps are sized to remove >99% of the incoming mass flow in each stage, ensuring that by the third stage furthest from the target, turbomolecular pumps are able to operate in a nominal ~mTorr range. We anticipate full system testing with helium in mid 2019.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP033  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP041 Preliminary Design of RF-Shielded Bellows wakefield, interface, vacuum, experiment 1341
 
  • Y.T. Huang, C.K. Chan, C.-C. Chang, C.M. Cheng, P.J. Chou, Y.C. Yang
    NSRRC, Hsinchu, Taiwan
 
  A new design of RF-shielded bellows is proposed for the TPS to alleviate wake field effects and Joule heating resulting from contact resistance at the contact interface of sliding two dissimilar metals. Most efforts are put into controlling corrosion which is regarded as the main cause of electrical contact degradation. Rh-Au is chosen as a mating interface because they are stable under high temperature condition. Experimental tests are made to find an effective plating thickness of Rh and Au and to determine a suitable normal load applicable on the Rh-Au interface. A preliminary design of RF-shielded bellows that can sustain thousands of cycles during their lifetime is under testing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP041  
About • paper received ※ 06 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW088 Removal and Installation Planning for the Advanced Light Source - Upgrade Project storage-ring, MMI, injection, vacuum 1609
 
  • D. Leitner, P.W. Casey, K. Chow, D.F. Fuller, M. Leitner, A.J. Lodge, M. Lopez, J. Niu, P. Novak, C. Steier, S.P. Virostek, W.L. Waldron
    LBNL, Berkeley, California, USA
 
  The ALS-U project is a proposed upgrade to the Advanced Light Source (ALS) at Berkeley Lab that aims to deliver diffraction limited performance in the soft x-ray range. By lowering the horizontal emittance to about 70 pm rad, the brightness for soft x-rays will increase two orders of magnitude compared to the current ALS. The design utilizes a nine-bend achromat lattice, with reverse bending magnets and on-axis swap-out injection utilizing an accumulator ring. This paper will describe the preliminary plans for the installation of the new three-bend achromat accumulator ring (AR) in the existing tunnel and for replacing the current storage ring with the new nine-bend achromat lattice. The AR will be installed during regular maintenance shutdowns while the ALS continues to operate. The SR will be replaced during a nine months installation period followed by three months of commissioning during the twelve darktime period.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW088  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP024 Alternative Material Choices to Reduce Activation of Extraction Equipment extraction, radiation, vacuum, proton 2363
 
  • D. Björkman, B. Balhan, J.C.C.M. Borburgh, L.S. Esposito, M.A. Fraser, B. Goddard, L.S. Stoel, H. Vincke
    CERN, Geneva, Switzerland
 
  At CERN, the Super Proton Synchrotron (SPS) is equipped with a resonant slow extraction system in Long Straight Section 2 (LSS2) towards the fixed target (FT) beam lines in the North Area. The extraction region provides the physics experiments with a quasi-DC flux of high-energy protons over a few seconds, which corresponds to tens of thousands of turns. The resonant slow extraction process provokes beam losses and is therefore the origin of radiation damage and the production of induced radioactivity in this region of the machine. This induced radioactivity imposed high constraints on the equipment design to be reliable to minimise the radiation exposure to personnel during machine maintenance. A detailed FLUKA model was developed in order to better understand the beam loss patterns, activation of the machine and to identify equipment components that could be optimised to reduce the residual dose related hazards. Simulations identified multiple alternative materials for extraction equipment components as well as shielding locations, which implementation could reduce residual activation hazards.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP024  
About • paper received ※ 26 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW020 Next Generation Cryogenic Current Comparator (CCC) for nA Intensity Measurement cryogenics, pick-up, coupling, detector 2510
 
  • T. Sieber, D.M. Haider, H. Reeg, M. Schwickert, T. Stöhlker
    GSI, Darmstadt, Germany
  • H. De Gersem, N. Marsic, W.F.O. Müller
    TEMF, TU Darmstadt, Darmstadt, Germany
  • J. Golm, F. Schmidl, P. Seidel, V. Tympel
    FSU Jena, Jena, Germany
  • M. Schmelz, R. Stolz, V. Zakosarenko
    IPHT, Jena, Germany
  • T. Stöhlker
    IOQ, Jena, Germany
  • T. Stöhlker
    HIJ, Jena, Germany
  • J. Tan, G. Tranquille
    CERN, Geneva, Switzerland
 
  A Cryogenic Current Comparator (CCC) is an extremely sensitive DC-Beam Transformer based on superconducting SQUID technology. Recently, a CCC without a toroidal core and with an axially oriented magnetic shielding has been developed at the Institute of Photonic Technologies (IPHT) Jena/Germany. It represents a compact and lightweight alternative to the ’classical’ CCC, which was originally developed at PTB Braunschweig and is successfully in operation in accelerators at GSI and CERN. Excellent low-frequency noise performance was demonstrated with a prototype of this new CCC-type. Current measurements and further tests are ongoing, first results are presented together with simulation calculations for the magnetic shielding. The construction from lead as well as simplified manufacturing results in drastically reduced costs compared to formerly used Nb-CCCs. Reduced weight also puts less constraints on the cryostat. Based on highly sensitive SQUIDs, the new prototype device shows a current sensitivity of about 6 pA/Hz1/2 in the white noise region. The measured and calculated shielding factor is ~135 dB. These values, together with a significant cost reduction - resulting also from a compact cryostat design - opens up the way for widespread use of CCCs in modern accelerator facilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW020  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB047 High-Power Test of a 12 Cell Accelerating Structure Build in Halves klystron, vacuum, GUI, ECR 2912
 
  • M.M. Peng, Y.L. Jiang, J.Y. Liu, Z.N. Liu, X.C. Meng, J. Shi, H. Zha
    TUB, Beijing, People’s Republic of China
 
  An X-band 12 cell travelling-wave accelerating structure has been developed and high-power tested at Tsinghua University in China. This structure works at 2⁄3 π at the frequency of 11.424 GHz. It is a 12-cell constant-impedance structure build in halves and was silver-brazed as a vacuum tight structure. The high power test was conducted at Tsinghua X-band high power test facility [1] with a 50-MW X-band klystron at a repetition rate to 40 Hz. The final input power was 51.23 MW with a 200 ns pulse width, which means an accelerating gradient of 88.58 MV/m was reached. This paper presents the high power test results including the gradient and breakdown history.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB047  
About • paper received ※ 10 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS054 Pyg4ometry : A Tool to Create Geometries for Geant4, BDSIM, G4Beamline and FLUKA for Particle Loss and Energy Deposit Studies interface, simulation, detector, cavity 3244
 
  • S.T. Boogert, A. Abramov, J. Albrecht, G. D’Alessandro, L.J. Nevay, W. Shields, S.D. Walker
    JAI, Egham, Surrey, United Kingdom
 
  Studying the energy deposits in accelerator components, mechanical supports, services, ancillary equipment and shielding requires a detailed computer readable description of the component geometry. The creation of geometries is a significant bottleneck in producing complete simulation models and reducing the effort required will provide the ability of non-experts to simulate the effects of beam losses on realistic accelerators. The paper describes a flexible and easy to use Python package to create geometries usable by either Geant4 (and so BDSIM or G4Beamline) or FLUKA either from scratch or by conversion from common engineering formats, such as STEP or IGES created by industry standard CAD/CAM packages. The conversion requires an intermediate conversion to STL or similar triangular or tetrahedral tessellation description. A key capability of pyg4ometry is to mix GDML/STEP/STL geometries and visualisation of the resulting geometry and determine if there are any geometric overlaps. An example conversion of a complex geometry used in Geant4/BDSIM is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS054  
About • paper received ※ 19 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYYPLS2 Different Versions of Cryogenic Current Comparators with Magnetic Core for Beam Current Measurements cryogenics, pick-up, operation, proton 3431
 
  • J. Golm, F. Schmidl, P. Seidel
    FSU Jena, Jena, Germany
  • H. De Gersem, N. Marsic, W.F.O. Müller
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M.F. Fernandes, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M.F. Fernandes, J. Tan, C.P. Welsch
    CERN, Geneva, Switzerland
  • M.F. Fernandes, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • D.M. Haider, F. Kurian, M. Schwickert, T. Sieber, T. Stöhlker
    GSI, Darmstadt, Germany
  • R. Neubert
    Thuringia Observatory Tautenburg, Tautenburg, Germany
  • M. Schmelz, R. Stolz, V. Zakosarenko
    IPHT, Jena, Germany
  • T. Stöhlker
    IOQ, Jena, Germany
  • T. Stöhlker, V. Tympel
    HIJ, Jena, Germany
  • V. Zakosarenko
    Supracon AG, Jena, Germany
 
  For more than 20 years Cryogenic Current Comparators (CCC) are used to measure the current of charged particle beams with low intensity (nA-range). The device was first established at GSI in Darmstadt and was improved over the past two decades by the cooperation of institutes in Jena, GSI and CERN. The improved versions differ in material parameters and electronics to increase the resolution and in dimensions in order to meet the requirements of the respective application. The device allows non-destructive measurements of the charged particle beam current. The azimuthal magnetic field which is generated by the beam current is detected by low temperature Superconducting Quantum Interference Device (SQUID) current sensors. A complex shaped superconductor cooled down to 4.2 K is used as magnetic shielding and a high permeability core serves as flux concentrator. Three versions of the CCC shall be presented in this work: (1) GSI-Pb-CCC which was running at GSI Darmstadt in a transfer line, (2) CERN-Nb-CCC currently installed in the Antiproton Decelerator at CERN and (3) GSI-Nb-CCC-XD which will be operating in the CRYRING at GSI 2019. Noise, signal and drift measurements were performed in the Cryo-Detector Lab at the University of Jena.  
slides icon Slides THYYPLS2 [4.344 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THYYPLS2  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP054 Superconducting Dipole Design for a Proton Computed Tomography Gantry dipole, proton, site, solenoid 3574
 
  • E. Oponowicz, H.L. Owen
    UMAN, Manchester, United Kingdom
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the MSC grant agreement No 675265, OMA - Optimization of Medical Accelerators.
Proton computed tomography aims to increase the accuracy of proton treatment planning by directly measuring proton stopping power. This imaging technique requires a proton beam of 330 MeV incident kinetic energy for adult patients. Employing superconducting technology in the beam delivery system allows it to be of comparable size to a conventional proton therapy gantry. A superconducting bending magnet design for a proton computed tomography gantry is proposed in this paper. The 30 deg, 3.9 T canted-cosine-theta dipole wound with NbTi wires is used to steer 330 MeV protons in an isocentric beam delivery system which rotates around the patient. Two methods of magnetic field shielding are compared in the context of proton therapy facility requirements; traditional passive shielding with an iron yoke placed around the magnet and an active shielding option utilising extra layers of the superconducting coil.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP054  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB088 Optimizing The Reliability of The Fire Alarm System in The Taiwan Photon Source detector, radiation, controls, storage-ring 4026
 
  • W.S. Chan, F.-D. Chang, C.S. Chen, Y.F. Chiu, J.C. Liu, Z.-D. Tsai
    NSRRC, Hsinchu, Taiwan
 
  The fire alarm system plays a critical role for the safety of building occupants. However, in the past two years from 2016 to 2017, occasionally false alarms at the Taiwan Photon Source (TPS) occurred. Results of more detailed observations indicated that radiation and/or electromagnetic interference (EMI) of the TPS accelerator disturb smoke detectors and signal line circuits (SLCs). Lead shielding covers, adjusting of the detector alarm verification time and a laser-based aspi-rating smoke detector were used to reduce the probabil-ity that fire alarms become activated to less than 0.5 times per year.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB088  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB108 LBNF Hadron Absorber: Updated Mechanical Design and Analysis for 2.4 MW Operation operation, hadron, site, simulation 4078
 
  • A. Deshpande, K. Anderson, K. E. Gollwitzer, B.D. Hartsell, J. Hylen, V.I. Sidorov, S. Tariq
    Fermilab, Batavia, Illinois, USA
 
  The Long-Baseline Neutrino Facility (LBNF) Hadron Absorber is located downstream of the decay pipe. It consists of actively cooled aluminum and steel blocks surrounded by steel and concrete shielding. Majority of the beam power is deposited in the absorber core which is water cooled. The surrounding steel and concrete shielding are air-cooled. The absorber provides radiation protection to personnel and keeps soil and ground activation levels to below allowable limits. It is designed for 2.4 MW beam operations. The total heat load deposited into the absorber is approximately 400 kW. The current design considers the longer 4-interaction length target of the optimized beam design. In addition, the ‘bafflette’ around the target reduces the energy deposited into the absorber. For this reason, the sculpting in the aluminum core blocks, which was in the previous design, was removed, making the design uniform and less complicated. In addition, the uniformity of the absorber makes it easier to understand the muon monitor data. Steady state thermal, structural, and Computational Fluid Dynamics (CFD) analysis of critical absorber aluminum and steel components during steady state operations is discussed herein. A similar analysis for a 120 GeV, 10 µs pulse, accident condition is also discussed. A preliminary design for the accident pulse prevention system that protects the absorber is also described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB108  
About • paper received ※ 30 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS031 Simulations of the Activation of a Proton Therapy Facility Using a Complete Beamline Model With BDSIM simulation, proton, neutron, experiment 4176
 
  • R. Tesse, E. Gnacadja, C. Hernalsteens, N. Pauly
    ULB - FSA - SMN, Bruxelles, Belgium
  • S.T. Boogert, L.J. Nevay, W. Shields
    JAI, Egham, Surrey, United Kingdom
  • C. Hernalsteens
    IBA, Louvain-la-Neuve, Belgium
 
  A detailed model of the IBA Proteus One compact gantry system has been created with BDSIM (Beam Delivery Simulation) that has been validated against experimental data. Results regarding activation studies have been obtained for the first time using seamless simulations of the transport of protons in the beamline and their interactions with the environment. The activation of the concrete shielding of the system is estimated after a period of 20 years of operation. These main results are presented and discussed in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS031  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)