Keyword: status
Paper Title Other Keywords Page
MOPRB022 Current Status of the High-Power RF Systems During Phase2 Operation in SuperKEKB klystron, cavity, operation, GUI 619
 
  • K. Watanabe, K. Marutsuka, Ma. Yoshida, S.I. Yoshimoto
    KEK, Ibaraki, Japan
 
  The SuperKEKB is an asymmetric-energy two-ring collider consisting of the high-energy ring (HER) for 7 GeV electrons and the low-energy ring (LER) for 4 GeV positrons at KEK. Both the electron and positron beams are injected from the Linac injector complex, which includes a newly constructed 1.1 GeV positron damping ring (DR) to supply a high-quality low emittance positron beam to the LER. The high power RF system has a role to drive the ARES cavities and the superconducting RF cavities for the SuperKEKB. The operating frequency of RF system is 508.9 MHz. The required RF power from the klystron at maximum storage beam current is ~850 kW (CW). The number of RF stations is total 31 for the main ring (MR) and DR. The status of each high power RF components, troubles of them and operation condition that occurred during phase 2 commissioning from Feb 2018 to July 2018 will be reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB022  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS022 Current Status of the MYRRHA Cavities cavity, resonance, operation, vacuum 892
 
  • K. Kümpel, D. Bade, M. Busch, D. Koser, S. Lamprecht, N.F. Petry, H. Podlech, S. Zimmermann
    IAP, Frankfurt am Main, Germany
 
  The MYRRHA (Multi-purpose hYbrid Research Reac-tor for High-tech Applications) Project is a planned ac-celerator driven system (ADS) for the transmutation of long-living radioactive waste. In order test the reliability of the planned 17 MeV injector, a shortened injector with 5.9 MeV consisting of the ion source, a 4-Rod RFQ, 2 Quarter Wave Rebunchers (QWRs) and a total of 7 normal conducting CH structures is currently being installed in Louvein-la-Neuve (LLN, Belgium). Before the cavities can be tested with beam, they are subjected to so-called low power tests several times during the individual con-struction stages in order to be able to correct any devia-tions. This paper describes the status of the two Quarter Wave Rebunchers, which are currently in the process of copper plating and final acceptance, as well as the first two CH structures, the first of which is already being conditioned while CH 2 is still in preparation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS022  
About • paper received ※ 10 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZZPLM2 Status of Automated Optimization Procedures at the European XFEL Accelerator FEL, feedback, electron, undulator 1212
 
  • S. Tomin
    EuXFEL, Schenefeld, Germany
  • L. Fröhlich, M. Scholz
    DESY, Hamburg, Germany
 
  The European XFEL is in the operational stage since fall 2017. Since then, tuning of the FEL performance (e.g. of the photon pulse energy) has become increasingly important. Due to a large number of parameters to which FEL facilities are highly sensitive and their complex correlations, controlling and optimizing them in a speedy manner is becoming a very important and challenging task. Several automated optimization procedures were developed to optimize the FEL beam quality. In this work, we present the status and the results of these activities, as well as the optimization statistics.  
slides icon Slides TUZZPLM2 [5.882 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUZZPLM2  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP012 Power Converters for the ESS Warm Magnets: Procurement Status linac, dipole, quadrupole, neutron 1251
 
  • R. Visintini, M. Cautero, T. N. Gucin
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • C.A. Martins
    ESS, Lund, Sweden
 
  In the frame of the Italian In-Kind collaboration for the construction of the European Spallation Source (ESS), Elettra Sincrotrone Trieste research center is in charge, among all, of the provision of the power converters for the warm magnets of the superconducting part of the linear accelerator and of the proton beam transport line. The procurement process is running for all types of power converters. The first components have been delivered to ESS already in March 2018, while the Dipole and Quadrupole power converters are under construction. The first batches have been factory tested and shipped to Lund. The corrector power converters have been manufactured and are currently tested and calibrated at Elettra before their delivery to ESS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP012  
About • paper received ※ 09 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP034 A Modular Optical Firing Interface for CERN’s Generic Power Converter Control Platform controls, interface, ISOL, electron 1315
 
  • M. Di Cosmo, T.G. Gaime, B. Todd
    CERN, Geneva, Switzerland
 
  The power converters group at CERN has developed a third generic converter controller (FGC3) and regulation platform (RegFGC3), capable of controlling any of CERN’s power converters. This platform provides electrical connections to the low-level control elements of power converters, and in some cases a galvanic isolation is required between the converter controller output, and the power converter under control. To meet these requirements, a generic modular optical firing platform has been developed, which converts the electrical firing pulses from the RegFGC3 and FGC3 platforms into optical drive signals. Designed to be fully scalable, this platform provides various protection mechanisms to verify the integrity of the firing information. For example, checking for illegal firing states, dead-time, and drive errors. This paper describes the modular optical firing interface, the basic principles, and the configurations which are in use, or are planned to be used at CERN.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP034  
About • paper received ※ 15 May 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP048 Current Status of Turkish Accelerator and Radiation Laboratory electron, radiation, cavity, FEL 1359
 
  • A.A. Aksoy, O.F. Elçim
    Ankara University Institute of Accelerator Technologies, Golbasi, Turkey
  • Ö. Karslı, C. Kaya, B. Koc
    Ankara University, Accelerator Technologies Institute, Golbasi, Turkey
 
  Funding: T.R. Presidency Strategy and Budget Office Grand No: 2006K-120470
Turkish Accelerator and Radiation Laboratory (TARLA) which is designed to deliver various accelerator based radiation sources, aims to be outstanding research instrument for users from both Turkey and region. Within the current scope of TARLA its superconducting accelerator will drive two of free electron laser (FEL) beamlines in order to provide Continuous Wave (CW) tunable radiation of high brightness in the mid- and far-infrared range as well as a Bremmstrahlung radiation station. Main components of TARLA, such as injector, superconducting accelerating modules and cryoplant are under commissioning currently. In this paper commissioning results and current status of facility are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP048  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP056 LANSCE Vacuum System Improvements in the Last ~10 Years vacuum, operation, neutron, linac 1375
 
  • T. Tajima, J.E. Bernal, M.J. Borden, J.P. Chamberlin, F.A. Martinez, J.F. O’Hara, A. Poudel, K.A. Stephens
    LANL, Los Alamos, New Mexico, USA
 
  Funding: DOE/NNSA
The Los Alamos Neutron Science Center (LANSCE) accelerator started its operation in 1972. To mitigate the vulnerability due to old equipment and to restore the 120 Hz operation capability we lost a while ago, we have gone through a refurbishment / risk mitigation project since 2007. This paper summarizes the improvements in the vacuum systems in the last ~10 years and shows some data on the downtimes caused by vacuum failures. The refurbished equipment is significantly more maintainable and will contribute to extend the life of this old accelerator, but it has been a challenge to reduce the downtime. Some examples that caused a long downtime will be described.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP056  
About • paper received ※ 24 May 2019       paper accepted ※ 26 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS006 Tests at High RF Power of the ESS Medium Beta Cryomodule Demonstrator cavity, cryomodule, cryogenics, linac 1940
 
  • P. Bosland, C. Arcambal, F. Ardellier, S. Berry, A. Bouygues, E. Cenni, G. Devanz, T. Hamelin, X. Hanus, O. Piquet, J.P. Poupeau, B. Renard, P. Sahuquet
    CEA-DRF-IRFU, France
  • C. Darve
    ESS, Lund, Sweden
  • P. Michelato
    INFN/LASA, Segrate (MI), Italy
  • G. Olivier, J.P. Thermeau
    IPN, Orsay, France
 
  CEA is in charge of the 30 elliptical medium and high-beta cryomodules to be installed in the ESS tunnel in Lund, Sweden. Before launching the assembly of the series cryomodules, CEA developed a medium-beta cryomodule technology demonstrator in a collaboration with IPNO, LASA and ESS. This paper briefly presents the cryomodule assembly and summarizes the main results of the high RF power tests performed in 2018 in a dedicated test stand in CEA Saclay. The main ESS requirements were reached: Eacc = 16.7 MV/m in cavities, Pforward = 1.1 MW in power couplers, RF pulses length = 3.6 ms at 14 Hz. The piezo tuners efficiently compensated the Lorentz forces detuning and could stabilize the accelerating field better than 1% over the full length of the expected ESS 2.86 ms beam pulse without any LLRF regulation system. Following this successful validation CEA started the assembly of the first ESS medium-beta series cryomodule  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS006  
About • paper received ※ 06 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS036 Operation Status of J-PARC Rapid Cycling Synchrotron operation, proton, vacuum, synchrotron 2020
 
  • J. Kamiya, K. Yamamoto
    JAEA/J-PARC, Tokai-mura, Japan
 
  The 3 GeV rapid cycling synchrotron (RCS) at the Japan Proton Accelerator Research Complex (J-PARC) provides more than 500 kW beams to the Material and Life Science Facility (MLF) and Main Ring (MR). In such a high-intensity hadron accelerator, even losing less than 0.1% of the beam can cause many problems. Such lost protons can cause serious radio-activation and accelerator component malfunctions. Therefore, we have conducted a beam study to achieve high-power operation. In addition, we have also maintained the accelerator components to enable stable operation. This paper reports the status of the J-PARC RCS over the last year.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS036  
About • paper received ※ 10 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS119 Status of the ESS Medium Beta Cavities at INFN - LASA cavity, controls, HOM, niobium 2211
 
  • P. Michelato, M. Bertucci, A. Bignami, A. Bosotti, M. Chiodini, A. D’Ambros, L. Monaco, R. Paparella, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • S. Aurnia, O. Leonardi, A. Miraglia, G. Vecchio
    INFN/LNS, Catania, Italy
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
  • L. Sagliano
    ESS, Lund, Sweden
 
  INFN-LASA contributes in-kind to the European Spallation Source ERIC with 36 6-cell cavities for the Medium Beta section of the Superconducting Linac. After having developed the electromagnetic and mechanical models, few prototypes have been produced and tested. Based on this experience, we are now supervisioning the cavity production at the industry, the resonators test at DESY and the delivery to CEA at Saclay. In this paper, we report on the status of the overall INFN-LASA contribution including also document handling, interface data exchange and QA/QC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS119  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW087 Control System Studio to Monitor Front End and Beamlines Status as well as Light Source Stability electron, operation, controls, photon 2687
 
  • W.Y. Lin, B.Y. Chen, C.S. Huang, C.H. Kuo, T.Y. Lee
    NSRRC, Hsinchu, Taiwan
 
  The primary task during a shift change at the Taiwan Photon Source Accelerator Operations team is to know the exact status of the machine, so that problems can be discovered immediately and solved when the machine behaves abnormal. To provide a stable beam during top-up operation, it is necessary to monitor closely the stability of the light source, of front end areas and beamlines. Should any abnormality occur, the operator would initiate initial troubleshooting and adjustments, inform users and sub-system staff members and perform subsequent first anal-yses and system optimizations. In this article, we describe how to sort through the nec-essary information with the Control System Studio (CSS) design page. There are currently seven beamlines in operation at the Taiwan Photon Source (05, 09, 21, 23, 25, 41, 45) and more new beamlines will be added in the future. Com-pared with other tools, CSS is intuitive and easy to revise. No matter weather adding new parameters or changing settings, the operation team can quickly get familiar with the machine status and perform an interface upgrade.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW087  
About • paper received ※ 27 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB012 Overview on SC CH-Cavity Development cavity, linac, SRF, heavy-ion 2822
 
  • M. Busch, M. Basten, T. Conrad, P. Müller, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • W.A. Barth, F.D. Dziuba, M. Miski-Oglu
    GSI, Darmstadt, Germany
  • W.A. Barth, F.D. Dziuba, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth
    MEPhI, Moscow, Russia
  • F.D. Dziuba
    IKP, Mainz, Germany
 
  Funding: Work supported by GSI, HIC for FAIR, BMBF Contr. No. 05P18RFRB1
During the last decades an enermous effort has been put into the development of low beta structures for hadron acceleration worldwide. Since hadrons exhibit a very inert velocity gain due to their high mass this change in speed has to be taken into account when utilizing low beta cavities. At the Institute of Applied Physics (IAP), Frankfurt, Germany, five multi-cell CH-cavities (Crossbar H-Mode) have been developed and tested for different kind of applications so far. In addition to the successfully tested original 360 MHz prototype further structures envisaged for beam operation have been fabricated and tested. Overview, status and outlook of this cavity technology is topic of this contribution.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB012  
About • paper received ※ 08 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB025 High Density Mapping for Superconducting Cavities cavity, cryogenics, radiation, operation 2860
 
  • Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • Y. Fuwa
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • R.L. Geng
    JLab, Newport News, Virginia, USA
  • H. Hayano
    KEK, Ibaraki, Japan
 
  High density mapping system for superconducting cavities are under development. Testing on the stiffener X-ray mapping system at JLAB showed consistent results in comparison with simultaneously taken GM tube or ion chamber output signals. The system provides better visi-bility as shown by data briefly reported here. In addition to the temperature and the X-ray mapping, a sensitive magnetic field mapping system with high spatial density is also under development. The magnetic field sensor is AF755B, whose operations at cryogenic temperatures are already reported by other group. Our development status using the magnetic field sensor will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB025  
About • paper received ※ 19 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS096 Open XAL Status Report 2019 cavity, LEBT, linac, framework 3341
 
  • A.P. Zhukov, C.K. Allen, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
  • B.E. Bolling, J. F. Esteban Müller, E. Laface, Y. Levinsen, N. Milas, C. Rosati
    ESS, Lund, Sweden
  • C.P. Chu, Y. Li
    IHEP, Beijing, People’s Republic of China
  • T. Dodson
    University of Tennessee, Knoxville, USA
  • P. Gillette, P. Laurent, G. Normand, A. Savalle
    GANIL, Caen, France
  • M.T. Li, X.H. Lu, J. Peng
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  The Open XAL accelerator physics software platform is being developed through an international collaboration among several facilities since 2010. This paper discusses progress in beam dynamics simulation, new RF models, and updated application framework along with new generic accelerator physics applications. We present the current status of the project, a roadmap for continued development and an overview of the project status at each participating facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS096  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB053 Upgrade of the Historical Data Query and Analysis System for HLS-II radiation, database, real-time, operation 3928
 
  • Z.Y. Xie, C. Li, G. Liu, Z.X. Shao, Y. Song, J.G. Wang, K. Xuan
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  The current historical data query and analysis system for the Hefei Light Source II (HLS-II) was developed with Apache Struts2. However, Apache Struts2 need to be fixed from time to time to avoid being attacked. Therefore, a new system based on Spring Boot and Vue.js is developed. Meanwhile, the performance of the system is optimized, and the radiation monitor module is added. This paper will detail the system architecture and software implementation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB053  
About • paper received ※ 24 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB090 Laboratory Exhaust Gas Treatment Systems at TPS controls, synchrotron, photon, experiment 4029
 
  • J.-C. Chang, W.S. Chan, Z.-D. Tsai
    NSRRC, Hsinchu, Taiwan
 
  There are three main laboratory exhaust gas treatment systems equipped at Taiwan Photon Source (TPS): acid/alkaline system for corrosive acids and alkalis, volatile solvents, and other hazardous chemicals; organic system for biological experiments; and general system for other gas. Gas is collected in hoods installed near the sources of contamination in laboratories. The contamination then is transported through duct to the gas treatment equipment installed outside of the TPS experimental hall.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB090  
About • paper received ※ 06 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB093 RF Data Acquisition and Soft Alarm System for the Taiwan Photon Source SRF, EPICS, network, data-acquisition 4039
 
  • Z.K. Liu, F.Y. Chang, L.-H. Chang, M.H. Chang, S.W. Chang, L.J. Chen, F.-T. Chung, Y.T. Li, M.-C. Lin, C.H. Lo, Ch. Wang, M.-S. Yeh, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) is a modern, high brightness 3 GeV light source. A data acquisition pro-gram for the radio frequency (RF) system, including a transient data recorder, a long term data archiver and real time data monitoring, has been developed for the analysis of RF trips and RF system debugging. A soft alarm system is implemented as well utilizing EPICS and python packages. The hardware architecture and the functionality of the RF data acquisition and soft alarm system will be discussed in this article.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB093  
About • paper received ※ 09 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB098 FETS Personnel & Machine Interlock Systems controls, timing, ion-source, radiation 4057
 
  • J.H. Macgregor
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The Front End Test Stand (FETS) [1] is a high energy pulsed proton driver that aims to produce a perfectly chopped 50 Hz, 60 mA, 2 ms H’ beam. FETS consists of a Penning Ion source, Low Energy Beam Transport (LEBT), 4 m long bolted construction 324 MHz four vane Radio Frequency Quadrupole (RFQ). The H’ Beam will be perfectly chopped so that bunches of particles can be trapped and accelerated with very low loss into a circular accelerator. To protect personnel from X-ray radiation along with prompt neutrons & gamma radiation, a concrete block-house has been built around the facility and a personnel interlock and search system developed. This paper discusses the mechanical and electrical systems used to ensure personnel safety via the Personnel Protection System (PPS) and machine safety by use of a Programmable Logic Controller, (PLC), used as the Machine Interlock Systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB098  
About • paper received ※ 09 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS015 Design and Manufacturing of the First Multiplet for the Super-FRS at FAIR quadrupole, sextupole, vacuum, alignment 4138
 
  • E.J. Cho, H. Müller, C. Roux, K. Sugita, M. Winkler
    GSI, Darmstadt, Germany
  • A. Borceto, G. Drago, G. Valesi, D. Ventura
    ASG, Genova, Italy
 
  The Super-FRS (Superconducting FRagment Separator) at FAIR is a two-stage in flight separator, which aims to produce rare isotopes of all elements up to Uranium and separate them spatially within a few hundred nanoseconds so that a study of very short lived nuclei can be performed efficiently. In total, it is required to construct 24 dipoles and 170 multipole magnets (quadrupole, sextupole, octupole and steering dipole). Due to the limit of space, the multipole magnets will be arranged as a group (2 ~ 9 magnets) in a common cryostat and they are called as a multiplet. The design challenge of the multiplet lies in a strong iron saturation of the quadrupole leading to disturb the field quality and high design pressure of the He vessel (20 bars). The first multiplet for the Super-FRS is constructed. The magnet column consisting of one quadrupole and one sextupole is cooled in a He vessel filled with up-to 800 liters of liquid He. The both magnets are superferric type and have a large warm bore radius of 190 mm. This paper presents the design overview and the manufacturing status of the first multiplet.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS015  
About • paper received ※ 12 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS070 Diagnostic Tool For CompactPCI Crates EPICS, controls, diagnostics, network 4275
 
  • H.Z. Chen, C.H. Chen, Y.-S. Cheng, K.T. Hsu, K.H. Hu, C.Y. Liao, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  On the control system hardware platform for the Taiwan Photon Source (TPS) more than half use CompactPCI crates. If a crate malfunctions, the internal crate card will not operate properly affecting accelerator operation. If the crate, however, could provide instant remote operational information, an opportunity exists to maintain or replace it in advance. Therefore, a diagnostic tool was developed to analyse and diagnose the condition of the crates. When abnormal operations occur, an alarm can be issued for early inspection and maintenance. This way it is possible to prevent the EPICS IOC from crashing by CompactPCI crates, which improves the reliability of accelerator operation. A detailed system architecture, implementation and progress will be discussed in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS070  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS074 The Commission of Home-made 500MHz 80kW Solid-state Amplifier in NSRRC power-supply, ISOL, MMI, HOM 4288
 
  • T.-C. Yu, F.Y. Chang, L.-H. Chang, M.H. Chang, S.W. Chang, L.J. Chen, F.-T. Chung, Y.D. Li, M.-C. Lin, Z.K. Liu, C.H. Lo, Ch. Wang, M.-S. Yeh
    NSRRC, Hsinchu, Taiwan
 
  Solid-state for high power RF application is an attracting and interesting technology which is now become popular in accelerator field. To adopt and master such technique, a 500MHz, 80kW solid-state amplifier is thus developed in NSRRC. The amplifier is consisted of 100 900W amplifier modules which are driving by identical modules. Each module contains input and output directional couplers and status monitoring circuits. To have longer life time and better performance, the RF power transistors are integrated with water cooled heat sink directly. In such way, the transistors have higher output power and better efficiency. The RF power of each module is combined through coaxial combiner while its DC power is provided by parallel connected DC power supplies which can provide better redundancy and reliability. The home-made solid-state amplifier is demonstrated to have quite high quality RF power and reliability with acceptable power combination efficiency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS074  
About • paper received ※ 29 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS090 Injection Locked 1497 MHz Magnetron klystron, cathode, operation, injection 4322
 
  • M.L. Neubauer, M.A. Cummings, A. Dudas, R.P. Johnson, S.A. Kahn, G.M. Kazakevich, M. Popovic
    Muons, Inc, Illinois, USA
  • R.A. Rimmer, H. Wang
    JLab, Newport News, Virginia, USA
 
  Muons, In is building an amplitude modulated phase-locked magnetron to replace the klystrons in CEBAF. To do that requires changing the magnetic field at a rate that would induce eddy currents in the standard magnetron. We report on the status of the project to make a stainless steel anode with copper elements to minimize heating while the stainless steel reduces eddy current effects. The construction of the magnetron is two months from completion, while the test stand is ready for delivery of the magnetron  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS090  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS091 Phase and Frequency Locked 350 MHz Magnetron cathode, operation, injection, vacuum 4325
 
  • M.L. Neubauer, A. Dudas, R.P. Johnson, S.A. Kahn, G.M. Kazakevich, M. Popovic
    Muons, Inc, Illinois, USA
 
  The 120kW 350 MHz magnetron is being developed for a number of RF systems, chiefly among them, Niowave’s 10 MeV accelerator. Industri-al applications of the magnetron have also been explored. The CW magnetron can be operated in the pulse mode by a novel injection locking system. We report on the status of the program and progress to date  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS091  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS099 Fermilab Superconducting Nb3Sn High Field Magnet R&D Program dipole, operation, collider, proton 4338
 
  • G. Velev, G. Ambrosio, E.Z. Barzi, V.V. Kashikhin, S. Krave, V. Lombardo, I. Novitski, S. Stoynev, D. Turrioni, X. Xu, A.V. Zlobin
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
Magnets based on the modern Nb3Sn conductor are the main candidates for future high-energy hadron colliders. Fermilab as part of the U.S. MDP executes an extensive R&D program on these high-field magnets. This program includes basic conductor and material R&D, quench per-formance studies, and building a meter-long high-field demonstrator. This paper summarizes the current status of the program including its recent results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS099  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS116 The SARAF-LINAC Project 2019 Status linac, MEBT, cavity, cryomodule 4352
 
  • N. Pichoff, R.D. Duperrier, G. Ferrand, B. Gastineau, F. Gougnaud, M. Jacquemet, C. Madec, O. Piquet, Th. Plaisant, F. Senée, D. Uriot
    CEA-IRFU, Gif-sur-Yvette, France
  • D. Berkovits, J. Luner, A. Perry, E. Reinfeld
    Soreq NRC, Yavne, Israel
 
  SNRC and CEA collaborate to the upgrade of the SARAF accelerator to 5 mA CW 40 MeV deuteron and proton beams (Phase 2). CEA is in charge of the design, construction and commissioning of the MEBT line and the superconducting linac (SARAF-LINAC Project). The prototypes of the 176 MHz NC rebuncher, SC cavities, RF coupler and SC solenoid-Package have been tested recently. Meanwhile, the cryomodules technical specifications have been written and called for tender. This paper presents the status of the SARAF-LINAC Project at April 2019.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS116  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)