Keyword: superconducting-cavity
Paper Title Other Keywords Page
MOPRB103 A Phase Shifter for Multi-Pass Recirculating Proton LINAC proton, cavity, linac, superconducting-magnet 802
 
  • J. Qiang, L.N. Brouwer, S. Prestemon
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and used computer resources at the National Energy Research Scientific Computing Center.
The multi-pass recirculating proton linac can significantly improve the usage efficiency of RF superconducting cavities by passing the proton beam through the same cavity multiple times. However, in order to achieve the multiple acceleration, synchronous conditions in phase have to be satisfied. In this paper, we propose a fixed field superconducting magnet system as a phase shifter to meet the synchronous conditions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB103  
About • paper received ※ 09 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB029 Design of the Elliptical Superconducting Cavities for the JAEA ADS cavity, SRF, simulation, acceleration 2873
 
  • B. Yee-Rendón, Y. Kondo, F.M. Maekawa, S.I. Meigo, J. Tamura
    JAEA/J-PARC, Tokai-mura, Japan
 
  The superconducting CW proton linear accelerator for an Accelerator Driven Subcritical System (ADS) proposed by Japan Atomic Energy Agency (JAEA) employs elliptical cavities for the final acceleration of 180 MeV to 1.5 GeV. Since this energy region implies a change of beta from 0.55 to 1, two cavity models were developed using the geometrical betas of 0.68 and 0.89 to improve the acceleration efficiency. The study of the electromagnetic design was simulated using SUPERFISH (SF) code and python program to do variable scan, the results were benchmarked with CST Microwave Studio program (CST).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB029  
About • paper received ※ 18 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB056 Design Study of 325MHz RF Power Coupler for Superconducting Cavity cavity, impedance, resonance, simulation 2937
 
  • J.Y. Yoon, H.J. Cha, S.W. Jang, E.-S. Kim, K.R. Kim, C.S. Park, S. H. Park
    KUS, Sejong, Republic of Korea
  • J. Bahng
    Korea University Sejong Campus, Sejong, Republic of Korea
  • K.R. Kim
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  We present the design study of the RF input power coupler for 325 MHz superconducting cavities. The power coupler, based on a conventional coaxial transmission line, provides RF powers to the cavity up to 12kW in CW mode. The thermal interceptors are considered as 4.5 K and 40 K or 4.5 K and 77 K corresponding to the usage of liquid Helium only or both liquid Helium and Nitrogen for cryogenic temperature to reduce the thermal load. The transition box (T-box), which is assembled with power coupler, is designed and applied for impedance matching and inner conductor cooling.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB056  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)