THPTS —  Poster Session - Tiger Snake   (23-May-19   15:30—17:30)
Paper Title Page
THPTS001 Development of Cryogenic Suspension in the ANU 8t Superconducting Solenoid With Iron Yoke 4103
 
  • S.T. Battisson, N.R. Lobanov, D. Tsifakis, T.B. Tunningley
    Research School of Physics and Engineering, Australian National University, Canberra, Australian Capitol Territory, Australia
  • J.F. Smith
    University of Surrey, Department of Physics, Guildford, United Kingdom
 
  Funding: The Australian Federal Government Superscience/EIF funding under the NCRIS mechanism.
An 8 Tesla superconducting solenoid was commissioned at The Australian National University to make precision measurements of fusion cross-sections. Forces between the solenoid and the iron yoke that houses it must always be maintained within safe limits and precision location of the solenoid coil is necessary to achieve this. Thermal contraction of components can impact the locating structure of the solenoid coil, leading to unsafe forces. Improvements to this structure allowed successful completion of the first fusion measurements with the 8T solenoidal separator, and demonstrated that it is now ready for a program of fusion measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS001  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS002 Sirius Pre-alignment Results 4106
 
  • R. Junqueira Leão, H. Geraissate Paranhos de Oliveira, F. Rodrigues, G.R. Rovigatti de Oliveira, U.R. Sposito
    LNLS, Campinas, Brazil
 
  Sirius is a 4th generation synchrotron light source under final installation and beginning of commissioning phase in Brazil, with a bare emittance of 250 picometer rad. In order to fulfil stability requirements (magnets displacement caused by vibration of 6 nm) imposed to achieve expected performance, the mechanical assembly of supporting structures and magnets were designed without adjustment mechanisms. Yet, the misalignment errors of the magnets are the dominating source of dynamical aperture reduction, leading to a maximum permissible deviation of 40 micrometers between adjacent magnets. To this end, dimensional engineering was applied to conceive an alignment concept for magnets on a same girder based solely on the geometric characteristics of the parts. For the large volume positioning of girders in the storage ring tunnel, the applied methodology followed a strategy optimized to reduce measurement uncertainty, as described in the literature. This paper will present the complete measurement process that led to the alignment of Sirius, from the deployment and survey of reference networks to the final alignment of the machine. To express a consistent and unequivocal alignment result and assess the alignment quality considering the measurement uncertainty, an innovative metric described previously was employed. This work will show that the positioning of supports satisfies the requirement of 80 micrometer between girders. Also, the devices and mechanisms used for assembling will be detailed. Inspection of full girder set performed on a Coordinate measuring machine shows a maximum deviation of 30 micrometers for any pair of magnets on a common support.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS002  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS004 The Sirius Heating System for the In-situ NEG Activation 4109
 
  • P.H. Nallin, M. Bacchetti, F.G.R. Carrera, D.R. Cavalcante, R.O. Ferraz, P.P.S. Freitas, G.R. Gomes, J.G. Hidalgo, R.T. Neuenschwander, F.A.M. Pinto, A.R.D. Rodrigues, R.M. Seraphim
    LNLS, Campinas, Brazil
 
  Sirius is a 3 GeV fourth-generation synchrotron light source under commissioning in Brazil, with 518 m circumference and a bare lattice emittance of 0.25 nm.rad. This ultra-low emittance machine is based on approximately 700 magnets with 28 mm typical gap. The standard vacuum chamber, that makes up around 80% of the circumference, is a 26 mm external diameter copper tube. Due to the small conductance of the chambers and the limited space between the magnets, the vacuum pumping will be based on distributed concept and then non­-evaporable getter (NEG) coating will be extensively used. To activate the NEG coating, the chambers must be heated at 200°C for about 24 hours. The solution for Sirius was the development of an ultra-thin heating tape, 0.4 mm thick, which allows an in-situ bake-out. The developed tapes are able to operate continuously at 220°C and have in their design a thermal shield that reduces the radiation heat loss to the magnets. This paper describes the development of the heating tape, its power supply, the control software and the operation of the system during the NEG activation at Sirius.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS004  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS006 Upgrade of the Canadian Light Source Booster RF System to Solid State 4112
 
  • J.M. Patel, D. Bertwistlepresenter, J. Stampe
    CLS, Saskatoon, Saskatchewan, Canada
  • A. Bachtior, A. Borisov, N. Pupeter
    CRE, Wuppertal, Germany
  • P. Hartmann
    DELTA, Dortmund, Germany
 
  Funding: CFI, NSERC, NRC, CIHR, the Province of Saskatchewan, WD, and the University of Saskatchewan
The Canadian Light Source synchrotron (CLS) had first light in 2004. For the last 14 years of operation we have exclusively used klystrons to provide RF power to our linac, booster, and storage ring. The klystrons represent a single point of failure for the operation of our booster and storage ring. This is especially poignant in the case of our booster ring klystron which is no longer manufactured. We have chosen to move to solid state amplifier (SSA) RF technology for its implicit high redundancy, modularity, ease of maintenance, and efficiency. Herein we review the performance parameters of our upgraded booster RF to a 100 kW 500 MHz transmitter built by Cryoelectra.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS006  
About • paper received ※ 08 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS007 MYRRHA 80 kW CW RF Coupler Design 4115
 
  • Y. Gómez Martínez, M.A. Baylacpresenter, D. Bondoux, F. Bouly, P.-O. Dumont
    LPSC, Grenoble Cedex, France
  • S. Blivet, C. Joly, J. Lesrel, H. Saugnac
    IPN, Orsay, France
  • W. Kaabi
    LAL, Orsay, France
 
  MYRRHA [1] (Multi Purpose Hybrid Reactor for High Tech Applications) is an Accelerator Driven System (ADS) project. Its superconducting linac will provide a 600 MeV - 4 mA proton beam. The first project phase based on a 100 MeV linac is launched. The Radio-Frequency (RF) couplers have been designed to handle 80 kW CW at 352.2 MHz. This paper describes the thermal, mechanical and RF studies leading to the final design of the RF coupler.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS007  
About • paper received ※ 10 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS008 Prospects of Additive Manufacturing for Accelerators 4118
 
  • N. Delerue, S. Jenzer
    LAL, Orsay, France
  • H.C. Carduner
    SUBATECH, Nantes, France
  • R.L. Gerard
    CERN, Meyrin, Switzerland
  • P.M. Manil
    CEA-DRF-IRFU, France
  • P.R. Repain
    LPNHE, Paris, France
  • A. Simar
    UCL, Louvain-la-Neuve, Belgium
 
  Funding: Université Paris-SAclay, Labex P2IO and P2I departement
Additive manufacturing allows the production of mechanical components often much faster than traditional manufacturing. Several accelerators components built using additive manufacturing have already been qualified for use in accelerator. A workshop was held in Orsay in December 2018 to discuss the prospects of using additive manufacturing for particle accelerators and particle detectors. We report here on the prospects as far as accelerators are concerned.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS008  
About • paper received ※ 20 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS009 High-Current Emittance Measurements at MAMI 4121
 
  • S. Heidrich, K. Aulenbacher, M. Dehnpresenter, P. Heil
    IKP, Mainz, Germany
  • M.W. Bruker
    HIM, Mainz, Germany
 
  Funding: Work supported by BMBF-Verbundforschung Verbundprojekt 05H2015UMRB1, R&D Beschleuniger (Positronenquellen)
The effects of high beam currents and different types of electron sources on the emittance of the beam at the 3.5 MeV beamline of the Mainzer Microtron MAMI were observed. A thermionic BaO source and a GaAs-based photo-source that allows spin polarization were used. In order to measure the beam size, a new type of wire scanner was utilized. The results show maximum normalized emittance values in the order of a few hundred nmrad for both sources, which lies distinctly within the acceptance of the higher energy stages of the accelerator.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS009  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS010 Start of the Series Production for the Cryogenic Magnet Corrector Modules of FAIR 4124
 
  • E.S. Fischer, A. Bleile, V.I. Datskov, V. Marusov, J.P. Meier, P.J. Spiller
    GSI, Darmstadt, Germany
 
  The fast cycling superconducting synchrotron SIS100 has to deliver high intensity beams for the FAIR project at GSI, Darmstadt. The main dipoles will ramp with 4 T/s up to a maximum magnetic field of 1.9 T where the field gradient of the main quadrupole will reach 27.77 T/m. The integral magnetic field length of the horizontal/vertical steerer and of the chromaticity sextupole will provide 0.403/0.41 m and 0.383 m respectively. We present the status of the first magnets test results as well as the overall procedure of production and testing of the complete series of the cryomagnetic corrector modules.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS010  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS011 Design, Production, and Testing of Superconducting Magnets for the Super-FRS 4128
 
  • H. Müller, E.J. Cho, G. Golluccio, C. Roux, H. Simon, K. Sugitapresenter, M. Winkler
    GSI, Darmstadt, Germany
  • H. Allain, M. Daly, P. Grafin, A. Madur, J.-E. Munoz-Garcia, L. Quettier, H. Reymond
    CEA-IRFU, Gif-sur-Yvette, France
  • A. Borceto, G. Drago, G. Valesi, D. Ventura
    ASG, Genova, Italy
  • J. Lucas
    Elytt Energy, Madrid, Spain
  • L. X. Van Den Boogaard
    CERN, Geneva, Switzerland
 
  The Super FRS is a two-stage in flight separator to be built next to the site of GSI, Darmstadt, Germany as part of FAIR (Facility for Anti-proton and Ion Research). Its purpose is to create and separate rare isotope beams and to enable the mass measurement also for very short lived nuclei. Due to its three branches a wide variety of experiments can be carried out in frame of the NUSTAR collaboration. Due to the large acceptance needed, the magnets of the Super-FRS have to have a large aperture and therefore only a superconducting solution is feasible. A superferric design with superconducting coils was chosen in which the magnetic field is shaped by an iron yoke. For the dipoles this iron yoke is at warm and only the coils are incorporated in a cryostat. The multiplets, assemblies of quadrupoles and higher order multipole magnets, are completely immersed in a liquid Helium bath. With the exception of special branching dipoles all superconducting magnets of Super-FRS have been contracted and are being built by Elytt in Spain (dipoles) and ASG in Italy (multiplets). The cold test of all magnets will take place in a dedicated test facility at CERN. This contribution will present the status of manufacturing of dipoles and multiplets, and also gives a short overview on the test facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS011  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS013 Further Designs of HOM Couplers for Superconducting 400 MHz RF Cavities 4132
SUSPFO022   use link to see paper's listing under its alternate paper code  
 
  • N.F. Petry, M. Busch, K. Kümpel, O. Meusel, H. Podlech
    IAP, Frankfurt am Main, Germany
 
  The Future Circular Collider (FCC) is one possible future successor of the Large Hadron Collider (LHC) at CERN. The proton-proton collider center-of-mass collision energy is set to 100 TeV with a beam current of 0.5 A. To achieve this energy a stable acceleration is critical and therefore higher order modes (HOM) need to be damped. HOM dampers, further characterized as couplers, need to fulfill several criteria to be efficient. As a first property the couplers should assure a longitudinal impedance of higher order modes of below 10 kW. Furthermore, the loaded Q-factor should be below 1000 and the corresponding R/Q value should be in the range of 10 Ω. Besides the Hook-type and Probe-type HOM coupler two additional designs were simulated. The recent results of the different couplers attached to a superconducting 400 MHz RF cavity will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS013  
About • paper received ※ 09 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS014 Visual Inspection of Curved Particle Accelerator Beam Pipes with a Modular Robot 4135
 
  • N. Schweizer
    RMR, TU Darmstadt, Darmstadt, Germany
  • I. Pongrac
    GSI, Darmstadt, Germany
 
  Inspecting ultra-high vacuum pipe systems of particle accelerators without disassembling the beam pipes is a complex challenge. In particular, curved sections of particle accelerators require a unique approach for the examination of the interior. For the planned heavy ion synchrotron SIS100 at FAIR, an inspection robot is currently under development, featuring an optical imaging system with which the robot can be navigated through the beam pipe. We present the current prototype, which is based on a modular snake-like robot with active wheels and joints. Due to the stipulated low movement velocity, it can be shown that a kinematic model is sufficient to control the robot whereas dynamical effects can be neglected. This concept is proven in experiments with the prototype. At the current development status, the robot is controlled manually by setting the velocity of the first module and its desired turning angle. In simulations we include a CAD model of a dipole chamber of the SIS100 and let an operator successfully navigate the robot through the beam pipe while only observing the camera image.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS014  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS015 Design and Manufacturing of the First Multiplet for the Super-FRS at FAIR 4138
 
  • E.J. Cho, H. Müller, C. Roux, K. Sugitapresenter, M. Winkler
    GSI, Darmstadt, Germany
  • A. Borceto, G. Drago, G. Valesi, D. Ventura
    ASG, Genova, Italy
 
  The Super-FRS (Superconducting FRagment Separator) at FAIR is a two-stage in flight separator, which aims to produce rare isotopes of all elements up to Uranium and separate them spatially within a few hundred nanoseconds so that a study of very short lived nuclei can be performed efficiently. In total, it is required to construct 24 dipoles and 170 multipole magnets (quadrupole, sextupole, octupole and steering dipole). Due to the limit of space, the multipole magnets will be arranged as a group (2 ~ 9 magnets) in a common cryostat and they are called as a multiplet. The design challenge of the multiplet lies in a strong iron saturation of the quadrupole leading to disturb the field quality and high design pressure of the He vessel (20 bars). The first multiplet for the Super-FRS is constructed. The magnet column consisting of one quadrupole and one sextupole is cooled in a He vessel filled with up-to 800 liters of liquid He. The both magnets are superferric type and have a large warm bore radius of 190 mm. This paper presents the design overview and the manufacturing status of the first multiplet.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS015  
About • paper received ※ 12 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS017 ILSF Ultralow Emittance Storage Ring Magnets 4142
 
  • F. Saeidi, S. Dastanpresenter, J. Rahighi, M. Razazian
    ILSF, Tehran, Iran
 
  Iranian Light Source Facility (ILSF) is a 3 GeV synchro-tron which is in the basic design phase. The ILSF storage ring (SR) is based on a Five-Bend Achromat lattice providing a low horizontal beam emittance of 270 pm-rad. The ILSF storage ring consists of 100 combined di-pole magnets of 2 types, 240 quadrupoles in 5 families and also 320 sextupoles in 6 families. In this paper, we present some design features of the SR magnets and dis-cuss the detailed physical design of these electromagnets including electrical and cooling calculations. Using POISSON and OPERA codes [1,2], pole and yoke geome-try was developed for each magnet
farhad.saeidi@ipm.ir.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS017  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS018 ILSF Booster Magnets for the New Low Emittance Lattice 4145
 
  • F. Saeidi, S. Dastanpresenter, S. Fatehi, J. Rahighi, M. Razazian
    ILSF, Tehran, Iran
 
  Iranian light source facility is a new 3rd generation light source with a booster which is supposed to work at 150 keV injection energy and guide the electrons to a 3GeV ring. It consists of 50 combined dipole magnets in one type, 50 quadrupoles and 15 sextupoles in one family. Using POISSON and OPERA3D codes[1,2], pole and yoke geometry was designed for each magnet and also cooling and electrical calculations have been done. ILSF has attempted to mechanical design and build prototype magnets which are ongoing at this stage too.
farhad.saeidi@ipm.ir
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS018  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS020 ESS Magnets at Elettra Sincrotrone Trieste 4148
THPTS019   use link to see paper's listing under its alternate paper code  
 
  • D. Castronovo, D. Caiazza, A. Fabris, R. Fabris, A. Gubertini, G. Loda
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Elettra Sincrotrone Trieste Research Center (Elettra) is one the Italian Institutions committed to the realization of the Italian in-kind contributions for the European Spallation Source. One of these consists in the supply of several conventional iron dominated electro-magnets to be installed in the superconducting part of the linac and in the transfer lines. The total number of magnets amounts to 2 dipoles, 139 quadrupoles, of four different families, and 72 correctors, of three different types. This document reports all related magnetic design and optimisations carried out to meet the required specifications and on the status of production and testing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS020  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS021 Magnets for Elettra 2.0 4152
 
  • D. Castronovo, E. Karantzoulis
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  After 25 years of faithfully serving the user community with excellent results, Elettra need a major upgrade with a new compact latice that will replace the existing double bend achromat for the reducing of the horizontal emittance and the increasing of the brilliance and coherence of the X-ray beam. This paper report the magnetic design development and optimisations carried out in order to satisfy the layout feasibility and the magnet strengths.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS021  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS022 The Realization of Iterative Learning Control for J-PARC LINAC LLRF Control System 4155
 
  • S. Li
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Z. Fangpresenter, Y. Fukui, K. Futatsukawa, F. Qiu
    KEK, Ibaraki, Japan
  • Y. Sato, S. Shinozaki
    JAEA/J-PARC, Tokai-mura, Japan
 
  The beam current of j-parc linac was planned to increase to 60 mA. The stronger beam current will lead to higher beam loading effect. Due to the low Q factor of cavity in high β section of linac, the traditional PID feedback & feedforward control method may have to face huge challenges. In order to make the system run better at 60 mA, the iterative learning control (ILC) method was put forward to use in LLRF control system. All the ILC operations are done in EPICS-PC. By installing the PyEpics module, we can use python programs to realize the data interaction between EPICS system and PC and further realize the ILC algorithm. In this paper, the architecture of ILC methods will be introduced. The performance of ILC method will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS022  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS024 Magnet Developments and Precise Alignment Schemes for SPring-8-II 4158
 
  • K. Fukami, T. Aoki, N. Azumi, H. Kimura, S. Matsubara, S. Takano, T. Taniuchi, T. Watanabe, K. Yanagida, C. Zhang
    JASRI, Hyogo, Japan
  • N. Azumi, K. Fukami, H. Kimura, S. Matsui, S. Takano, T. Watanabe
    RIKEN SPring-8 Center, Hyogo, Japan
  • S.I. Inoue, T. Kai, J. Kiuchi
    SES, Hyogo-pref., Japan
 
  The magnet lattice design of the SPring-8 upgrade, SPring-8-II, is a five bend achromat composed of one normal and four longitudinal gradient bending magnets. Permanent magnet has been chosen for both types of the dipoles, and the high gradient multipole magnets are all electromagnets. This presentation will overview the magnet developments and precise alignment schemes for SPring-8-II, focusing specifically on the following features. Temperature insensitive magnetic circuits with a function of fine magnetic field tuning have been developed for the permanent magnet dipoles. Narrow bore multipole magnets with compact coil assemblies have been designed. We optimized the shimming for enough good field regions, and minimized ohmic loss at the coils for suppressing thermal deformation. To improve the accuracy of vibrating wire magnet alignment, practical wire sag distributions have been quantitatively evaluated. In 2018, a test half-cell was constructed by which the feasibilities of the magnets and the overall alignment precisions including the effects of the thermal deformation of magnets, a repeatability of magnet reassembly has been confirmed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS024  
About • paper received ※ 10 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS026 Effect of Nitric Hydrofluoric Acid Treatment on Brazing of Alumina Ceramics and Pure Titanium 4161
 
  • M. Kinsho, J. Kamiyapresenter
    JAEA/J-PARC, Tokai-mura, Japan
  • K. Abe
    Hitachi Power Semiconductor Device, Ltd., Hitachishi, Ibaraki, Japan
  • T. Nakamura
    Asahi Kinzoku Co., Ltd., Gifu, Japan
 
  Alumina ceramics vacuum chamber which is used for the 3GeV rapid-cycling synchrotron (RCS) in J-PARC is composed of alumina duct, titanium (Ti) flanges and Ti sleeves. Before brazing the alumina duct and the Ti sleeves, the Ti sleeves were treated with nitric hydrofluoric acid. The purpose of this study is to clear the effect of this treatment for titanium material. It was cleared by SEM observation that the roughness of the titanium material after the nitric hydrofluoric acid treatment becomes big. It was also measured that the thickness of oxide film on surface of the titanium material was 12.7 nm before treatment and 6.0 nm after treatment. As a result of measuring the wettability of the brazing material which was silver brazing filler metal (Ag: 72%, Cu: 28%) on the Ti surface and the diffusion of the Ti material into the brazing material, it became clear that both the clearing of oxide layer on the alumina ceramics and the vacuum condition of the vacuum heating furnace were important for brazing between alumina ceramics and pure titanium.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS026  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS027 Accelerator Implementing Development of Ceramics Chamber with Integrated Pulsed Magnet for Beam Test 4164
 
  • C. Mitsuda, Y. Kobayashi, S. Nagahashi, T. Nogami, T. Obina, R. Takai, H. Takaki, T. Uchiyama, A. Ueda
    KEK, Ibaraki, Japan
  • T. Honiden, T. Nakanishi
    SES, Hyogo-pref., Japan
  • A. Sasagawa, A. Yokoyama, T. Yokoyama
    KYOCERA Corporation, Higashiomi-city, Shiga, Japan
 
  We advance the development of Ceramics Chamber Integrated Pulsed Magnet (CCIPM) of air-core type as the application to low emittance ring with a narrow bore of light source accelerator in the future. The CCIPM is composed of ceramics cylinder of 60 mm diameter and four copper coils, which are implanted in the groove penetrated on the ceramic thickness along 30 cm length by silver brazing*. In addition to this structure, we succeeded in the implementations of cable connecting base that mechanically connect the coils and power supply with feeder lines and the pattern shape coating inside the ceramic cylinder. Improved brazing technique made it possible to braze the coil and the base on the coil at the same time that the coils are implanted in the ceramic thickness. Newly developed functional coating can reduce the eddy current caused by main magnetic field and pass the alternate component of beam wall current by capacitance structure. We report the details about the performance from the viewpoint of vacuum, magnetic field, insulation on the accelerator implementation with the approach to new technical development, and the preparation progress of beam test in beam-transport line.
* C. Mitsuda, et al., in Proc. IPAC2015, Richmond, VA, USA, p. 2879
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS027  
About • paper received ※ 12 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS028 Recent Improvements and Future Upgrades of the J-PARC Main Ring Kicker Systems 4167
 
  • T. Sugimoto, K. Ishii, H. Matsumoto, T. Shibata
    KEK, Ibaraki, Japan
 
  J-PARC Main Ring provides 500kW proton beam to the long baseline neutrino oscillation experiment (T2K). In order to increase the beam intensity to improve the sensitivity of the CP violation study in neutrino sector, shorter repetition cycle and higher beam current are required. As part of the upgrade project, both injection and fast-extraction (Fx) kicker magnet systems have been improved. Air-cooled non-inductive ceramic resistors are used as the impedance-matching terminator for the injection kicker magnet. Power consumption and temperature rise of the termination resistor due to the beam induced current was simulated to optimize the number of parallel of the resistors. Efficiency of cooling fans was also simulated to improve the cooling ability. For the Fx kicker magnet, a fast charging power supply of the modulator was developed and deployed to shorten the charging period from 1.4 sec to 0.2 sec. This paper represents the simulation results, performance of the charging unit and future upgrade plans.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS028  
About • paper received ※ 21 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS029 Optimization of Staggered Array Undulator 4171
 
  • L.J. Chen, Q.K. Jia
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • M. Li, P. Li, J. Wang, D. Wu, D.X. Xiao, L.G. Yan, X. Yang
    CAEP/IAE, Mianyang, Sichuan, People’s Republic of China
 
  Funding: the National Key Research and Development Program of China under Grant No. 2016YFA0402003 the National Nature Science Foundation of China under Grant No. 11611140102.
The staggered array undulator consists of staggered poles and solenoid coils that form a periodically aligned transverse magnetic field in the pole gap. The addition of magnets in the longitudinal gap between the poles further enhances the peak field strength of the undulator. A method of enhancing the peak field strength of the undulator using cryogenic temperature permanent magnets and adding side magnets has been studied. The remanence of the magnet will increase at low temperatures and the peak field strength of the undulator will increase. The side magnets do not increase the maximum peak field strength of the undulator, but can reduce the solenoid magnetic field requirements and reduce the solenoid volume and cost. The influence of the special magnetic pole and magnet shape on the peak field strength of the undulator has also been studied.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS029  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS030 HEPS-TF Superconducting Wiggler Control System 4174
 
  • J.C. Wang, C.P. Chupresenter, Y. Gao, Q. Le, J. Liu, R. Ye, M.C. Zhan
    IHEP, Beijing, People’s Republic of China
 
  Funding: HEPS-TF
Superconducting Wiggler (SCW) is an important development direction of insertion devices for modern light sources. It is also the key technology of High Energy Photon Source Test Facility (HEPS-TF) insertion device system research. SCW control system involves power supply, cryogenics,vacuum and other devices, control. Serial port server was built for the SCW control system, with EPICS DB to make the PID algorithm for heater and superconductor cavity pressure, temperature, and with Ziegler-Nichols method to quickly find appropriate PID parameters.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS030  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS031 Simulations of the Activation of a Proton Therapy Facility Using a Complete Beamline Model With BDSIM 4176
 
  • R. Tesse, E. Gnacadja, C. Hernalsteens, N. Pauly
    ULB - FSA - SMN, Bruxelles, Belgium
  • S.T. Boogert, L.J. Nevay, W. Shields
    JAI, Egham, Surrey, United Kingdom
  • C. Hernalsteens
    IBA, Louvain-la-Neuve, Belgium
 
  A detailed model of the IBA Proteus One compact gantry system has been created with BDSIM (Beam Delivery Simulation) that has been validated against experimental data. Results regarding activation studies have been obtained for the first time using seamless simulations of the transport of protons in the beamline and their interactions with the environment. The activation of the concrete shielding of the system is estimated after a period of 20 years of operation. These main results are presented and discussed in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS031  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS034 Design and Progress of Mechanical Support in HEPS 4180
 
  • C. H. Li, Y. Jiaopresenter, M.X. Li, H. Wang, Z. Wang, L. Wu, N. Zhou
    IHEP, Beijing, People’s Republic of China
 
  HEPS is a new generation synchrotron facility on construction with very low emittance. Stringent requirements are proposed to the design of mechanical support. The alignment error between girders should be less than 50μm. Based on that, the adjusting resolution of the girder are required to be less than 5μm in both transverse and vertical directions. Besides, the Eigen frequency of magnet & girder assembly should be higher than 54Hz to avoid the amplification of ground vibrations. To fulfill these requirements, studies on mechanical support design is now being carried out in HEPS. This paper will describe the design and progress of those work.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS034  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS036 Quench Detection and Diagnostic Systems for the Superconducting Circuits for the HL-LHC 4183
 
  • R. Denz, D.O. Calcoen, E. De Matteis, V. Froidbise, S. Georgakakis, S. Haas, S. Mundra, T. Podzorny, A.P. Siemko, J. Spasic, J. Steckert
    CERN, Geneva, Switzerland
  • D. Blasco Serrano
    CIEMAT, Madrid, Spain
 
  The High Luminosity LHC project (HL-LHC) will incorporate a new generation of superconducting elements such as high field superconducting magnets based on Nb3Sn conductors and MgB2 based high temperature superconducting links for magnet powering. In addition, the HL-LHC will also feature new generations of NbTi based magnets. The proper protection and diagnostics of those elements require the development of a new generation of integrated quench detection and data acquisition systems as well as novel methods for quench detection. The next generation of quench detection systems is to a large extent software defined and serves at the same time as high performance data acquisition system. The contribution will discuss the specific needs of HL-LHC in terms of quench detection and present recent results from tests with prototype magnets. The contribution will show the implementation of new quench detection methods such as current derivative sensors. Measures for increasing the system dependability and easing its maintenance will be explained, as well as the improved supervision architecture using Ethernet based field-bus systems for fast data transmission.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS036  
About • paper received ※ 07 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS037 The Deformation-Stress Simulation and Measurement of Titanium Foil Strip for Hadron Monitor 4187
 
  • A.X. Wang, J.X. Chen, H.Y. He, L. Liu, X.J. Nie, C.J. Ning, J.L. Sun, G.Y. Wang, J.B. Yu, Y.J. Yu, J.S. Zhang, D.H. Zhu
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • L. Kang
    IHEP, Beijing, People’s Republic of China
 
  The measurement of beam profile by hadron monitor is in fact the measurement of the positive current after the secondary electrons escaped. According to the situation that the number of beam particles is small and the current signal is weak, the material titanium with high secondary electron generation rate is select by material comparison, and the foil strip type is used to increase the cross section area to obtain lager current level. On account of dead weight itself, as well as thermal expansion and contraction, the foil strip shall be loose. The loosen strip will deviate from its theoretical position, and cause the measuring error. Therefore, the deformation-stress of Ti foil strip (1000*50*0.1) was simulated under the pretension (10~90N) with the finite element software ANSYS. A set of experiment device with pretension adjustment and heating for the foil strip was designed, and then the deformation-stress was tested by a high precision 3-D imaging measurement system. Compared with the simulation results, the pretension would better set at about 50N.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS037  
About • paper received ※ 12 May 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS038 There-Dimensional Simulation of a C-Band 32-Beam Klystron 4190
SUSPFO063   use link to see paper's listing under its alternate paper code  
 
  • Z.N. Liu, H.B. Chen, J. Shi, H. Zha
    TUB, Beijing, People’s Republic of China
 
  A 32-beam klystron working at 5.712 GHz has been designed with efficiency of 70% and output power of 3.4 MW. Core oscillations method (COM) is chosen to bunch electrons. The code KlyC is used for 1-D and 1.5-D calculation and a series of parameters are given after optimizing, including the position, frequency, R/Q, Q0 and Qe of cavities. CST/PIC is used to make the final design and coaxial cavities are used. This paper describes 1-D, 1.5-D and 3-D beam dynamics of the klystron, compares their differences, and analyses effect of these differences on efficiency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS038  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS039 DESIGN OF A COMPACT VARIABLE X-BAND RF POWER SPLITTER 4194
 
  • F. Liu, H.B. Chen, J.Y. Liupresenter, Z.N. Liu, J. Shi, H. Zha
    TUB, Beijing, People’s Republic of China
 
  This paper presents a design of a compact variable X-band RF power splitter. The RF power splitter includes one input port and two output ports, and the power divi-sion ratio can be adjusted by changing the position of a short circuit piston. This system keeps a good match (less than -40 dB) at any power division ratio. An E-bend waveguide structure is selected to make the geometry more compact (11cm in length, 3.5cm in width and 5 cm in height). Special studies was conducted to sustain a low surface electrical field (maximum 65 MV/m at 100 MW input), and large bandwidth (250MHz). This power split-ter is designed for high-power test stand at Tsinghua Uni-versity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS039  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS040 Preliminary Design of Mechanical Supports for the Booster of Heps 4197
 
  • H. Wang, C.H. Li, C. Mengpresenter, H. Qu
    IHEP, Beijing, People’s Republic of China
 
  The Booster of High Energy Photon Source (HEPS) is a 454 meters ring with the repeat frequency of 1 Hz. The natural frequency of the magnets and their support as-sembly should be higher than 30 Hz. The alignment re-quirements on quadrupole and sextupole are better than 0.1 mm in x and y direction. This paper will discuss the preliminary design of the mechanical supports in Booster ring, as well as the discussion of finite element analyses results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS040  
About • paper received ※ 30 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS041 Progress and TDR Plans of the Mechanical System of CEPC 4200
 
  • H. Wang, S. Bai, M.X. Li, Y.D. Liu, C. Mengpresenter, H. Qu, J.L. Wang, P. Zhang, N. Zhou
    IHEP, Beijing, People’s Republic of China
 
  The TDR of CEPC is aimed at the key science and technology problems and makes preparations for the real project. This paper will describe the progress of mechanical system including the regular supports and transport vehicle design, the mockup plan, the installation scenario of machine detector interface (MDI) and the movable collimator, as well as the TDR plans of mechanical system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS041  
About • paper received ※ 28 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS043 PRELIMINARY MAGNETIC FIELD CALCULATION OF A 30-DEGREE DIPOLE MAGNET 4204
 
  • H. Liang, J. Huang, C. Jiang, T. Liu, B. Qin, K. Tang, J. Yangpresenter, J.Q. Ye
    HUST, Wuhan, People’s Republic of China
  • Y. Xie, T. Yu
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People’s Republic of China
 
  Preliminary design and field calculation of a 30-degree H-type dipole which can be applied to the beamline is introduced in this paper. According to the phys-ical requirements, 2D and 3D models are built and ana-lysed using OPERA. For achieving the magnetic field specifications, air slots are adopted, and trapezoidal shim on pole surface is used to improve the magnetic field error. Rogowski curve and harmonic shim at the pole end is used to reduce the integral magnetic field error and the higher order harmonic field error.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS043  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS044 Parameter Design of a Rotating Coil Measurement System for Quadrupoles 4207
 
  • Y. Xie, W. Chen
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People’s Republic of China
  • H. Liang, B. Qin, J. Yangpresenter
    HUST, Wuhan, People’s Republic of China
 
  Funding: This work was supported by The National Key Research and Development Program of China; and by National Natural Science Foundation of China (11375068).
HUST-PTF is a 5-year National Key Research and Development Program of China which is composed of cyclotron, beamline system, treatment chambers, etc. The beamline system connects the cyclotron and treatment chambers, provides proton beams in adequate size and shape and is crucial to the whole program. Vast dipoles and quadrupoles are employed in the beamline. Aimed at the quadrupoles used in the beamline, this article carried out the research on the high-precision rotating coil magnetic measurements for quadrupoles, including the quadrupole parameters, the principle and structure of the measuring system, measuring procedures and data processing method. Design of the rotating coils and analysis of the main errors are also contained.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS044  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS045 Preparation of Titanum-Zirconium-Vanadium Films by Quantitative Deposition 4210
 
  • J.Q. Shao, C. Chen, X.Q. Gepresenter, W. Li, S. Wang, Y. Wang, W. Wei, B. Zhang, Y.X. Zhang, B.L. Zhu
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  TiZrV has been used in vacuum technology and electric vacuum devices due to its high pumping speed and low activation temperature in recent years. At the same time, many preparation methods have been developed. Different from the current coating method of magnetron sputtering, this paper discusses the preparation of thin film coating from the viewpoint of vacuum sintering, which is flexible in design and more suitable for operation. Based on the analysis of the surface morphology of the sintered film, the feasibility and operability of the experimental method were explored from the surface compactness of the getter.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS045  
About • paper received ※ 25 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS046 The Limited B-Field Integral of Superconducting Longitudinal Gradient Bend Magnet 4213
 
  • C. Chen, L. Wang, H.R. Zhangpresenter, T. Zhang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  The National Synchrotron Radiation Laboratory (NSRL) is planning a fourth generation diffraction-limited light source–Hefei Advanced Light Source (HALS), it is based on a seven-bend achromat lattice providing an ultralow natural emittance of 34 pm rad. The emittance can be even lower with the use of longitudinal gradient bends (LGBs) and anti-bends (ABs). The designed energy for HALS is 2.4 GeV, superconducting LGB might be employed instead of normal bending magnet since it can improve radiated beam critical energy to hard x-ray regions without using up any straight sections. To get a peak field about 6 T and small B-field profile full width half maximum, SLS-2 type LGB is considered. In this paper, the limited B-field integral (along the beam path) is trying to be find with some restrictions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS046  
About • paper received ※ 12 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS048 Design of Longitudinal Gradient Bending Magnet of HALS 4215
 
  • B. Zhang, C. Chen, Z.L. Ren, X.Q. Wang, H. Xu
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Hefei Advanced Light Source (HALS) is a diffraction limited light source, which was proposed and expected to be built in the next few years by National Synchrotron Radiation Laboratory (NSRL) of China. Just like other new light sources, longitudinal gradient bending magnet (LGB) will be adopted to suppress the beam emittance. The magnet consists of 7 modules with different magnet-ic field. Each module has yoke and poles with the same size but different amount of permanent magnet to gener-ate field gradient. FeNi alloy is used to shunt magnetic flux and thus improve the temperature stability. Correc-tor coil or movable wedge can be used to adjust the field. Impact of magnetization direction error of permanent magnet block and parallelism error of poles on multi-poles is also evaluated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS048  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS052 Beam Loss Suppression by Beam Matching in Klystron 4218
 
  • S.J. Park, Y.J. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
  • S.C. Cha, D.H. Kim, D.H. Yu
    VITZRONEXTECH, Ansan-si, Gyeonggi-do, Republic of Korea
  • J.H. Hwang
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  Funding: The work was supported by the National R&D Program (grant number: 2016R1A6B2A01016828) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT in Korea.
High power klystrons usually employ large cathodes to generate high currents which are compressed inside the gun to provide optimum beam sizes at the cavity section. We compress the beam by using electrostatic and magnetostatic focusing fields which are established by gun electrodes and external magnets respectively. The geometry of the gun elecrodes and the external magnet is carefully designed to meet the matching condition which results in scalloping-free beam. We have established a systematic design procedures to achieve the beam matching condition at arbitrary beam sizes. In this article we report on the beam-matching design and simulation results with an example case of the 80-MW S-band klystron in the Pohang Accelerator Laboratory.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS052  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS053 Design of a Fast Cycled Low Loss 6 T Model Dipole Cooling at 1.9 K 4221
 
  • A.D. Kovalenko, V.A.. Gromov, E.E. Perepelkin, G. Shirkov
    JINR, Dubna, Moscow Region, Russia
  • B. Bordini, D. Tommasini
    CERN, Geneva, Switzerland
  • A. Kolomiets
    ITEP, Moscow, Russia
  • S. Kozub, L. Tkachenko
    IHEP, Moscow Region, Russia
 
  The option being considered for the FCC-hh high energy injector is a superconducting synchrotron replacing the CERN SPS. The new machine would operate in a cycled mode also to feed experimental areas, much like the SPS nowadays. Due to this specific cycled operation, innovative design and development approaches is required to cope with the AC losses in the superconducting cables and iron yoke. The research joins experience accumulated at CERN and JINR respectively in the design and operation of large systems operated at 1.9 K and, in fast ramped and cycled magnets. The specified parameters are the following: magnet aperture -80 mm; aperture field - 6 T; field ramp 0.2-0.5 T/s; coil conductor - NbTi; magnetic field homogeneity between 0.12 and 6 T of the order of 5·10-4. The minimization of the cycling losses is particular important. Total thermal losses should be limited to tentatively < 2 W/m at 4.2 K. The magnet design, and the results of preliminary tests on a candidate NbTi-wire for building a model magnet are presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS053  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS054 A Novel Approach to Triggering and Beam Synchronous Data Acquisition 4224
 
  • T. Šuštar
    Cosylab, Villigen, Switzerland
  • P. Bucher, G. Theidel
    PSI, Villigen PSI, Switzerland
  • R. Modicpresenter
    Cosy lab, Ljubljana, Slovenia
 
  SwissFEL, the new Free-Electron Laser facility is a 740 m long accelerator with the goal of providing pulses of light between 6 and 30 fs long at a wavelength of 1 to 7 Å at 100 Hz*. To support shot-to-shot photon diagnostic* and link the measurements to other measurements along the machine that belong to the same machine pulse, a new triggering and data acquisition system was developed. A new protocol was introduced which allows deterministic triggering, configuration and data transfer via one full-duplex optical connection. The measurement data is stamped with an unique pulse identifier, delivered from the SwisFEL Timing System**. A readout and control interface was developed to support data delivery to the Data Acquisition Dispatching Layer* and for controlling the system.
* Milne, et al., SwissFEL: The Swiss X-Ray Free-Electron Laser, Appl. Sci. 2017, 7(7), 720
** Kalantari, Biffiger, SwissFEL Timing System: First Opreational Experience, ICALEPC2017
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS054  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS055 Design and Construction of 3D Helmholtz Coil System to Calibrate 3D Hall Probes 4228
 
  • J. Marcos, J. Campmanypresenter, A. Fontanet, V. Massana, L.R.M. Ribó
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  In this paper we present the design of a system of 3D Helmholtz coils aimed to generate a magnetic field in any direction in a controlled way. The system is intended to be applied to the detailed characterisation of the response of 3D Hall probes as a function of the orientation of the measured field. The system will generate magnetic fields of up to 5 mT with an expected angular precision of 0.2 mrad.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS055  
About • paper received ※ 26 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS056 New Undulator and Front End for XAIRA Beamline at ALBA 4231
 
  • J. Campmany, J. Marcos, V. Massana
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  A new microfocus beamline for macromolecular crystallography, XAIRA, is being built at ALBA synchrotron light source. The light source for this new beamline is an in-vacuum undulator that can reach the spectrum range from 4 keV up to 20 keV. The in-vacuum undulator was terndered in 2018 and awarded to Kyma-RI consortium, and will be delivered to ALBA in November 2019. The Front End has been designed accordingly. It was tendered in 2018 and awarded to FMB. It will be delivered along second semester of 2019. In this paper we present the ID and FE designs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS056  
About • paper received ※ 11 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS057 New Small Diameter Rotating Coil Shaft for Characterizing New Generation of Multipolar Magnets 4234
 
  • J. Marcos, J. Campmanypresenter, V. Massana, R. Petrocelli, L.R.M. Ribó
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The proliferation of ultimate-light source facilities around the world has yielded the need of accurate characterization of small gap magnets. This also applies to multipolar magnets. Clearance diameters down to 10 mm for quadrupoless and sextupoles become to be used and need to be accurately measured. At these small gaps, the high order multipoles influence on electron beam dynamics is high, and it should be well characterized in order to guarantee a feasible operation of the accelerator. To face this challenge, ALBA magnetics measurement laboratory has developed a new rotating coil shaft with a diameter of 10 mm able to be introduced inside narrow-gap multipolar magnets. In this paper we present the design as well as the first characterization of such a device.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS057  
About • paper received ※ 11 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS058 New 50 KW SSPA Transmitter for the ALBA Booster 4237
 
  • P. Solans, B. Bravo, J.R. Ocampo, F. Pérez, A. Salompresenter
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • J.V. Balboa, I. Fernández, D. Iriarte, J. Lluch, A. Mellado, C. Rosa, F. Sierra, E. Ugarte
    BTESA, Leganés, Spain
 
  ALBA is a 3th generation 3 GeV synchrotron light source located in Barcelona and operating with users since May 2012. The IOT based transmitter for the booster cavity has been replaced by a Solid State Power Amplifier (SSPA) of 50 kW at 500 MHz in August 2018. The new transmitter is made of 96 active devices, which are divided in 12 modules of 8 transistors each one. The modules are combined in groups of four using the Gysel topology and two hybrid combiners are used for the final combining stage. The design allows the transmitter to provide enough power even when multiple transistor fails occur, in the same module or in different ones, and it also presents power supplies redundancy. These modules can be hot swapped, i.e., the module can be replaced by a spare at any time, even when the transmitter is providing power without affecting the operation. After two months of operation, the transmitter fulfills very well the design specifications regarding power, efficiency and gain; and although minor problems have arisen due to infant mortality in some components, the operation of the transmitter has never been affected due to the high redundancy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS058  
About • paper received ※ 15 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS059 Development of a 1.5 GHz, 1 KW Solid State Power Amplifier for 3rd Harmonic System of the Alba Storage Ring 4240
 
  • Z. Hazami, F. Pérez, A. Salompresenter, P. Solans
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  ALBA is the Spanish third generation synchrotron light source, located near Barcelona, in operation since 2012. In order to improve the operation, a third harmonic system has been designed for the Storage Ring in order to stretch the bunch length, and so, improve the beam life time and increase the stability current thresholds. The design of the system consist of four Higher Order Mode (HOM) damped normal conductive active cavities at 1.5 GHz*, feed with 20 kW of RF power each cavity, in order to provide the voltage of 1 MV to the electron beam. The 20 kW RF power transmitter system is based on 250 W solid state power amplifier modules added in parallel by a tree combination technique. The selected combination tree divides the 20 kW overall power per cavity in twenty 1 kW crates. This paper presents the designs of the 250 W power amplifier modules, of the splitter and of the combiner, as well as the measurement results of a 1 kW prototype crate.
* HOM Damped Normal Conducting 1.5 GHz Cavity for the 3rd Harmonic System of the ALBA Storage Ring. IPAC 2019 proceedings
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS059  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS060 Sirius Digital LLRF 4244
 
  • A. Salom, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • R.H.A. Farias, F.K.G. Hoshino, A.P.B. Lima
    LNLS, Campinas, Brazil
 
  Sirius is a Synchrotron Light Source Facility based on a 4th generation low emittance storage ring. The facility is presently under construction in Campinas, Brazil, and comprises a 3 GeV electron storage ring, a full energy booster synchrotron and a 120 MeV linac. The booster RF system is based on a single 5-cell cavity driven by a 50 kW amplifier at 500MHz and is designed to operate at 2 Hz rate. The storage ring RF system will start with 1 normal conducting 7-cell cavity. In the final configuration, the system will comprise 2 superconducting cavities, each one driven by a 240 kW RF amplifier. A digital LLRF system based on ALBA LLRF has been designed and commissioned to control 3 different types of cavities: 2 normal conducting single cell cavities, one multi-cell cavity driven by 2 amplifiers and one superconducting cavity driven by 4 amplifiers. The first LLRF System was installed and commissioned in the Sirius Booster in 2019. The performance of the control loops with beam, together with other utilities of the system like automatic start-up, conditioning, fast interlocks and post-mortem analysis will be presented in this paper, as well as possible upgrades for the future  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS060  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS062 Alternative Proposal for FCC-hh Extraction Septa 4248
 
  • A. Sanz Ull, M.G. Atanasov, B. Balhanpresenter, J.C.C.M. Borburgh
    CERN, Geneva, Switzerland
 
  Challenging requirements are set for the FCC extraction septa magnets, notably for the magnetic field level, the septum thickness and the leak field. An alternative to the baseline FCC extraction layout with normal conducting Lambertson septa is proposed, consisting of a Superconducting Shield (SuShi) stage and a Truncated Cosine theta septa stage with the aim of reducing the necessary number of septa and installed length. The principal parameters of the septa are described and the feasibility discussed. Areas for study improvement are identified.
This paper is intended for publication in the PRAB special edition.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS062  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS063 Development of a W-Band Power Extraction Structure 4252
 
  • F. Toufexis, B. J. Angier, D. Gamzina, A. McGuire, M. Shumail, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This project was funded by U.S. Department of Energy under Contract No. DE-AC02-76SF00515, and the National Science Foundation under Contract No. PHY-1415437.
We are modifying the X-Band Test Accelerator at SLAC to operate as an Extreme Ultra Violet (EUV) light source*. The existing photo electron gun will be replaced by a thermionic X-Band injector which utilizes RF bunch compression. The beam is accelerated up to 129 MeV using an X-Band traveling wave structure followed by a novel high shunt impedance standing wave structure. The beam then goes through a mm-wave undulator with a period of 1.75 mm, producing EUV radiation around 13.5 nm. The undulator is powered by a W-Band decelerator structure, which extracts the RF power from the electron beam. In this work we present the mechanical design and fabrication of the 91.392 GHz decelerator structure, as well as structural characterization of its cavities using SEM and 3D microscopy.
* F. Toufexis, et al, "A Compact EUV Light Source using a mm-wave Undulator", Proceedings of IPAC17.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS063  
About • paper received ※ 10 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS064 Sub-Picosecond X-Ray Streak Camera using High-Gradient RF Cavities 4256
 
  • F. Toufexis, V.A. Dolgashev
    SLAC, Menlo Park, California, USA
 
  Funding: This project was funded by U.S. Department of Energy under Contract No. DE-AC02-76SF00515.
We are developing an ultrafast diagnostic system for X-ray beams from Synchrotron Light Sources and Free-Electron Lasers. In this system, the X-ray beam is focused on the photocathode of a high-gradient radio-frequency cavity that accelerates the photo-emitted electrons to a few MeV while preserving their time structure. The accelerated electron beam is streaked by radio-frequency deflectors and then imaged on a screen. This approach will allow orders of magnitude improvement in time resolution over traditional streak cameras and could potentially enable time-resolved diagnostics of sub-100 fs X-ray pulses. We present preliminary beam dynamics simulations of this system and discuss the implementation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS064  
About • paper received ※ 11 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS065 Analysis on the Thermal Response to Beam Impedance Heating of the Post Ls2 Proton Synchrotron Beam Dump 4260
 
  • L. Teofili, F. Giordano, I. Lamas, F.-X. Nuiry, G. Romagnoli, B. Salvant
    CERN, Geneva, Switzerland
  • M. Marongiupresenter, M. Migliorati
    Sapienza University of Rome, Rome, Italy
 
  The High Luminosity Large Hadron Collider (HL-LHC) and the LIU (LHC-Injection Upgrade) projects at CERN are upgrading the whole CERN accelerators chain, increasing beam brightness and intensity. In this scenario, some critical machine components have to be redesigned and rebuilt. Due to the increase in beam intensity, minimizing the electromagnetic interaction between the beam and the device is a crucial design task. Indeed, these interactions could lead to beam instabilities and excessive thermo-mechanical loadings in the device. In this context, this paper presents an example of multi-physics study to investigate the impedance related thermal effects. The analysis is performed on the conceptual design of the new proton synchrotron (PS) internal dump.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS065  
About • paper received ※ 26 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS066 Beam Impact Experiment of 440GeV/p Protons on Superconducting Wires and Tapes in a Cryogenic Environment 4264
 
  • A. Will, A. Bernhard, A.-S. Müller
    KIT, Karlsruhe, Germany
  • Y. Bastian, B. Bordini, M. Favre, B. Lindstrom, M. Mentink, A. Monteuuis, A. Oslandsbotn, R. Schmidt, A.P. Siemko, K. Stachon, M. P. Vaananen, A.P. Verweij, A. Will, D. Wollmannpresenter
    CERN, Geneva, Switzerland
  • M. Bonura, C. Senatore
    UNIGE, Geneva, Switzerland
  • A. Usoskin
    BRUKER HTS GmbH, Alzenau, Germany
 
  The superconducting magnets used in high energy particle accelerators such as CERN’s LHC can be impacted by the circulating beam in case of specific failure cases. This leads to interaction of the beam particles with the magnet components, like the superconducting coils, directly or via secondary particle showers. The interaction leads to energy deposition in the timescale of microseconds and induces large thermal gradients within the superconductors in the order of 100 K/mm. To investigate the effect on the superconductors, an experiment at CERN’s HiRadMat facility was designed and executed, exposing short samples of Nb-Ti and Nb3Sn strands as well as YBCO tape in a cryogenic environment to microsecond 440 GeV/p proton beams. The irradiated samples were extracted and are being analyzed for their superconducting properties, such as the critical transport current. This paper describes the experimental setup as well as the first results of the visual inspection of the samples.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS066  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS067 Characterisation of the Radiation Hardness of Cryogenic Bypass Diodes for the HL-LHC Inner Triplet Quadrupole Circuit 4268
 
  • D. Wollmann, C. Cangialosi, C. Cangialosi, F. Cerutti, G. D’Angelo, S. Danzeca, R. Denz, M. Favre, R. Garcia Alia, D. Hagedorn, A. Infantino, G. Kirby, L. Kistrup, T. Koettig, J. Lendaro, B. Lindstrom, A. Monteuuis, F. Rodriguez-Mateos, A.P. Siemko, K. Stachon, A. Tsinganis, M. Valette, A.P. Verweij, A. Will
    CERN, Meyrin, Switzerland
  • A. Bernhard, A.-S. Müller
    KIT, Karlsruhe, Germany
 
  Funding: Work supported by the HL-LHC Project.
The powering layout of the new HL-LHC Nb3Sn triplet circuits is the use of cryogenic bypass diodes, where the diodes are located inside an extension to the magnet cryostat, operated in superfluid helium and exposed to radiation. Therefore, the radiation hardness of different type of bypass diodes has been tested at low temperatures in CERN’s CHARM irradiation facility during the operational year 2018. The forward characteristics, the turn on voltage and the reverse blocking voltage of each diode were measured weekly at 4.2 K and 77 K, respectively, as a function of the accumulated radiation dose. The diodes were submitted to a dose close to 12 kGy and a 1 MeV equivalent neutron fluence of 2.2x1014,n/cm2. After the end of the irradiation campaign the annealing behaviour of the diodes was tested by increasing the temperature slowly to 300 K. This paper describes the experimental setup, the measurement procedure and discusses the results of the measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS067  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS069 A Monitoring System for TPS Linac 4272
 
  • C.L. Chen, H.-P. Chang, C.-S. Fann, K.L. Tsai
    NSRRC, Hsinchu, Taiwan
 
  Abstract Since 2014, TPS Linac system has been operating regularly. In order to keep a high stability during a long operating time, it is important to develop a monitoring system to monitor all sub-systems, parameters, including setting values, reading values, control inputs and outputs. This system is not only recording all above mentioned parameters, but also provides an efficient diagnosis in case of troubleshooting. Because the controlling system in TPS Linac is using Siemens S7-300 PLCs, Simatic WinCC is utilized to develop a historical archiving, operational analyses, and operator activities in operation. This paper attempts to show a complete solution for the integrated software structure and its resulting process analysis.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS069  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS070 Diagnostic Tool For CompactPCI Crates 4275
 
  • H.Z. Chen, C.H. Chenpresenter, Y.-S. Cheng, K.T. Hsu, K.H. Hu, C.Y. Liao, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  On the control system hardware platform for the Taiwan Photon Source (TPS) more than half use CompactPCI crates. If a crate malfunctions, the internal crate card will not operate properly affecting accelerator operation. If the crate, however, could provide instant remote operational information, an opportunity exists to maintain or replace it in advance. Therefore, a diagnostic tool was developed to analyse and diagnose the condition of the crates. When abnormal operations occur, an alarm can be issued for early inspection and maintenance. This way it is possible to prevent the EPICS IOC from crashing by CompactPCI crates, which improves the reliability of accelerator operation. A detailed system architecture, implementation and progress will be discussed in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS070  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS071 Performance of TPS Cryogenic Permanent Magnet Undulators at NSRRC 4278
 
  • J.C. Huang, C.S. Yang, C.K. Yang
    NSRRC, Hsinchu, Taiwan
  • H. Kitamura
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • T. Kohda
    NEOMAX Engineering Co., Ltd., Tokyo, Japan
 
  Development of cryogenic permanent magnet un-dulators (CPMUs) is the most recent activity for Phase-II beamlines at the Taiwan Photon Source. A hybrid-type CPMU with a period length of 15 mm, based on PrFeB permanent-magnet materials, is under construc-tion. A maximum effective magnetic field of 1.33 T at a gap of 4 mm is obtained at 80 K.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS071  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS072 Field Measurements for a Superconducting Magnet at Room Temperature 4281
 
  • J.C. Jan, C.-C. Chang, Y.L. Chu, J.C. Huangpresenter, C.-S. Hwang, C.Y. Kuo, F.-Y. Lin
    NSRRC, Hsinchu, Taiwan
 
  A superconducting multipole wiggler (SMPW) was fabricated at the National Synchrotron Radiation Research Center (NSRRC) and was installed in the Synchrotron Light Research Institute (SLRI). A 3.5 T field strength could be generated by the NbTi coils and the magnetic arrays are immersed in a liquid helium (LHe) bath. A removable mapping chamber, made from thin stainless steel sheets, was developed to allow field mapping in the narrow aperture of the SMPW. The mapping chamber provides a room temperature environment for the magnetic field mapping and enables an easier field scan in the cryostat. The design for the mapping chamber includes a blockage of heat transfer from room temperature to the LHe bath and is strong enough to resist deformations during evacuation. The mechanical design, strain simulation, thermal simulation, dummy test and measurement results with the mapping chamber will be discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS072  
About • paper received ※ 10 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS073 Radiation Damage to Undulator Electronics at an Electron Accelerator 4285
 
  • T.Y. Chung, C.-H. Chang, A.Y. Chen, Y.W. Chen, J.C. Huangpresenter, J.C. Jan
    NSRRC, Hsinchu, Taiwan
 
  Experience gained from commissioning and operation of three elliptical polarization undulators (EPU) at the TPS taught us that undulator driving systems can behave erratically following a beam dump or loss. In this work, we discuss possible harmful radiation sources in a storage ring and analyse the effect of lack of electronic component radiation resistance in the system. According to measurements of spatial radiation distribution at the TPS, we propose solutions and an improved design for Phase-II EPUs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS073  
About • paper received ※ 19 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS074 The Commission of Home-made 500MHz 80kW Solid-state Amplifier in NSRRC 4288
 
  • T.-C. Yu, F.Y. Chang, L.-H. Chang, M.H. Chang, S.W. Chang, L.J. Chen, F.-T. Chung, Y.D. Li, M.-C. Lin, Z.K. Liupresenter, C.H. Lo, Ch. Wang, M.-S. Yeh
    NSRRC, Hsinchu, Taiwan
 
  Solid-state for high power RF application is an attracting and interesting technology which is now become popular in accelerator field. To adopt and master such technique, a 500MHz, 80kW solid-state amplifier is thus developed in NSRRC. The amplifier is consisted of 100 900W amplifier modules which are driving by identical modules. Each module contains input and output directional couplers and status monitoring circuits. To have longer life time and better performance, the RF power transistors are integrated with water cooled heat sink directly. In such way, the transistors have higher output power and better efficiency. The RF power of each module is combined through coaxial combiner while its DC power is provided by parallel connected DC power supplies which can provide better redundancy and reliability. The home-made solid-state amplifier is demonstrated to have quite high quality RF power and reliability with acceptable power combination efficiency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS074  
About • paper received ※ 29 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS075 Performance Tests of a Digital Low-Level Rf-System at the TPS 4292
 
  • F.Y. Chang, L.-H. Chang, M.H. Chang, S.W. Chang, L.J. Chen, F.-T. Chung, Y.T. Li, M.-C. Lin, Z.K. Liupresenter, C.H. Lo, Ch. Wang, M.-S. Yeh, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  A digital low-level RF (DLLRF) control system for the cavity gap voltage is now common throughout the world. At the Taiwan Photon Source (TPS) we installed and operated a DLLRF in the booster ring in 2018 successfully and plan to install it also in the storage ring in 2019. Operational and beam loading tests of the DLLRF at the storage ring are ongoing. The performance of the DLLRF in the presence of a large number of 60 Hz harmonics and its stability for gap voltage and phase will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS075  
About • paper received ※ 10 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS076 Design and Construction of Sextupole Magnet Prototype for Siam Photon Source II Project 4295
 
  • S. Prawanta, B. Boonwanna, P. Klysubun, A. Kwankasem, S. Pongampai, V. Sooksrimuang, P. Sudmuang, P. Sunwongpresenter
    SLRI, Nakhon Ratchasima, Thailand
 
  Siam Photon Source II (SPS-II) project in Thailand is the third-generation synchrotron light source. The lattice of the 3 GeV electron storage ring has been designed, consisting of 14 Double Triple Bend Achromat (DTBA) cells with the total circumference of 321.3 m. The storage ring lattice includes 56 bending magnets, 28 combined dipole and quadrupole magnets, 224 quadrupole magnets and 84 multifunction sextupole magnets. This paper presents the design and construction of a sextupole magnet prototype for SPS-II project. Magnet prototype was designed with the magnetic field gradient of 2,030 T/m2 and includes functions of skew-quadrupole, horizontal and vertical correctors. The magnetic core is made of S10C low-carbon steel. A prototype of sextupole magnet has been constructed. All dimensional tolerances are within the range of ±20 µm.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS076  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS077 Beam Instability Induced by RF System of an FEL-THZ Source 4298
SUSPFO004   use link to see paper's listing under its alternate paper code  
 
  • X.D. Tu, G. Feng, S.J. He, T. Hu, J. Jiang, S.Y. Lu, Y.Q. Xiong
    HUST, Wuhan, People’s Republic of China
 
  An SLAC-like Compact Linac installed on the HUST FEL-THz has been used as an injector to produce high power THz radiation. To meet the requirements of monochromaticity and repeatability for FEL, performance of electron beam and stability of RF system are notable. According to the existing facility, based on measurement results of RF jitter, instability of beam has been calculated, and it has been verified in relevant experiments. Furthermore, stability targets in RF system has been pro-posed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS077  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS080 Novel Technique Ion Assisted In-Situ Coating of Long, Small Diameter, Accelerator Beam Pipes with Compacted Thick Crystalline Copper Film 4301
 
  • A. Hershcovitch, M. Blaskiewicz, J.M. Brennan, W. Fischer, G.T. McIntyre, S. Verdú-Andrés
    BNL, Upton, Long Island, New York, USA
  • A.X. Custer, M.Y. Erickson, H.J. Poole
    PVI, Oxnard, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
Although great progress was made with in-situ copper coating, by magnetron sputtering, to address the high room temperature resistivity, literature indicates that conventionally deposited thick copper films do not retain the same RF conductivity at cryogenic temperatures, since straightforward deposition tends to result in films with columnar structure and other lattice defects, which cause significant conductivity degradation at cryogenic temperatures. We utilize energetic ions for ion assisted deposition (IAD) to reduce lattice imperfections, for coating. IAD that can in-situ coat long small diameter tubes with compacted crystalline structure thick copper films has been developed. Moreover, development of techniques and devices can resurrect IAD for other applications, which have been impractical and/or not viable economically. Comparison of conductivity at cryogenic temperatures between straight magnetron physical vapor deposition and IAD will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS080  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS081 Novel Apparatus and Technique for Measuring RR Resistivity of Tube Coatings at Cryogenic Temperatures 4304
 
  • A. Hershcovitch, J.M. Brennan, R. Than, S. Verdú-Andrés, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • A.X. Custer, M.Y. Erickson, H.J. Poole
    PVI, Oxnard, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
A unique apparatus for measuring RF resistivity of tubes and coated tubes at cryogenic temperatures is operational at BNL, which to our knowledge is the first of its kind. A folded quarter wave resonator structure of 300 mm length accesses a wide range of frequencies. The structure is cooled in liquid He bath at 4 K. All internal resonator components (except for test samples) were fabricated out of superconducting materials. Consequently, when the resonator is cooled, the bulk of the losses are due to the copper coating. The RF resistivity is determined from Q measurements, since for a fixed geometry the quality factor of a resonant cavity is proportional to the square root of the conductivity. The RF input loop and the output signal antenna are adjustable when cold via bellows to control matching to each cavity mode. The Q values of 10 resonant modes between 180 and 2500 MHz are deduced from the bandwidth of the S21 response Network Analyzer measurements. CST MicroWave Studio is used to extract the resistivity of the samples from the Q measurements. Resistivity results of solid Cu tube, 2, 5, & 10 μm Cu coated 316LN stainless steel RHIC beam tubes will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS081  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS084 Magnet Design Optimization for Future Hardon Colliders 4307
 
  • V.V. Kashikhin, V. Lombardo, G. Velev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Fermilab in collaboration with other members of the US Magnet Development Program (MDP) is working on the development of accelerator magnets for future hadron colliders. A 4-layer, 15-T dipole with 60 mm aperture based on Nb3Sn Low Temperature Superconductor (LTS) has been fabricated and tested. It is an important milestone of demonstrating readiness of the LTS magnet technology for the next generation of hadron colliders. At the same time, design studies aimed at boosting the magnet performance even further with the help of High Temperature Superconductors (HTS) are under way. This paper introduces a novel magnet technology - Conductor On Molded Barrel (COMB) optimized for the HTS materials and discusses possible steps towards its demonstration.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS084  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS086 Design of a CCD-based Laser Alignment Detection System 4311
 
  • J.X. Chen
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • X.Y. Hepresenter, W. Wang, H.T. Zhang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Funding: Work supported by National Natural Science Foundation of China (11705199)
Accelerator online alignment technology is an important means for accelerator stability detecting. A CCD-based laser alignment detection system is designed for the linear accelerator, and the detection distance of the system could reach 100m. The reference comparison method is used to detect the laser imaging position acquired by the reference detector at different times, and to obtain the relative positional deviation of the measurement reference or the tested objects. Through the measurement error analysis, the precision of the system is expected to reach ±10μm.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS086  
About • paper received ※ 11 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS087 Micro-aligned Solenoid for Magnetized Bunched-beam Electron Cooling of 100 GeV/u Ions 4314
 
  • P.M. McIntyre, J. Breitschopf, J. Gerity, J.N. Kellams
    Texas A&M University, College Station, USA
  • J. Breitschopf, J. Gerity, J.N. Kellams, A. Sattarov
    ATC, College Station, Texas, USA
 
  Funding: This work is supported by grant DE-SC0018468 from the US Dept. of Energy.
Magnetized electron cooling of ion beams requires pre-cise alignment of the electron beam with the equilibrium trajectory of the ion bunch. For the parameters required for JLEIC, a solenoid with bore field ~1 T, length ~30 m, and rms alignment of ~μrad is required. Such precise alignment has never been accomplished in a 1 T solenoid. The design of a micro-aligned solenoid is presented. A gap-separated stack of thin steel washers is located inside the solenoid. The washer stack shields transverse magnet-ic fields from its interior by a factor of ~10. A 30-washer module of the structure was built and measured using ultra-sensitive capacitive probes using a coordinate meas-uring machine. The r.m.s. coplanarity of the washer gaps was measured to be <5 μm, consistent with the required micro-alignment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS087  
About • paper received ※ 17 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS088 CBETA Permanent Magnet Production Run 4318
 
  • S.J. Brooks, G.J. Mahler, R.J. Michnoffpresenter, J.E. Tuozzolo
    BNL, Upton, Long Island, New York, USA
 
  214 neodymium permanent magnets have been manufactured for the return loop of the CBETA multi-turn ERL being built at Cornell University. There are 5 types of quadrupole and combined-function gradient magnets using a variant of the circular Halbach design. These are made out of NdFeB material and glued into an aluminium housing with water channels for temperature stabilisation. The NdFeB wedges and magnet construction were done by outside companies, while the final "tuning" using inserts containing 64 iron wires per magnet was done at BNL over a period of about 6 months. Average relative field errors of 2.3·10-4 were achieved on the beam region. The magnet strengths vary by type but are of order 10T/m for quadrupole component and up to 0.3T for the dipole. This paper reports on the field quality and timeline achieved in this production process.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS088  
About • paper received ※ 11 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS090 Injection Locked 1497 MHz Magnetron 4322
 
  • M.L. Neubauer, M.A. Cummings, A. Dudas, R.P. Johnson, S.A. Kahn, G.M. Kazakevich, M. Popovic
    Muons, Inc, Illinois, USA
  • R.A. Rimmer, H. Wangpresenter
    JLab, Newport News, Virginia, USA
 
  Muons, In is building an amplitude modulated phase-locked magnetron to replace the klystrons in CEBAF. To do that requires changing the magnetic field at a rate that would induce eddy currents in the standard magnetron. We report on the status of the project to make a stainless steel anode with copper elements to minimize heating while the stainless steel reduces eddy current effects. The construction of the magnetron is two months from completion, while the test stand is ready for delivery of the magnetron  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS090  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS091 Phase and Frequency Locked 350 MHz Magnetron 4325
 
  • M.L. Neubauer, A. Dudas, R.P. Johnson, S.A. Kahn, G.M. Kazakevich, M. Popovicpresenter
    Muons, Inc, Illinois, USA
 
  The 120kW 350 MHz magnetron is being developed for a number of RF systems, chiefly among them, Niowave’s 10 MeV accelerator. Industri-al applications of the magnetron have also been explored. The CW magnetron can be operated in the pulse mode by a novel injection locking system. We report on the status of the program and progress to date  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS091  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS093 Synchrotron Radiation Heating of the Helical Superconducting Undulator 4328
 
  • J.C. Dooling, R.J. Dejus, V. Sajaevpresenter
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02- 06CH11357.
A helical superconducting undulator (HSCU) was installed in the Advanced Photon Source (APS) Storage Ring (SR) during the January 2018 maintenance period. Shortly after the reintroduction of beam into the SR in late January, higher than expected heating was observed in the cryogenic cooling system. Steering the electron beam orbit in the upstream dipole provided reduction of the amount of synchrotron radiation reaching into the HSCU and allowed the device to properly cool and operate. Modeling the HSCU geometry with MARS shows the importance of Compton Scattering in transferring synchrotron photons with energies in the range of 10-100 keV through the vacuum chamber into the HSCU magnet pole and winding regions. Simulations carried out using MARS with EGS5 enabled indicate a rapid increase in transfer efficiency from the chamber wall to the HSCU with photon energy. Realistic spectral distributions of synchrotron photons are employed as input to MARS for several bending magnet field strengths.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS093  
About • paper received ※ 12 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS094 High Gradient Quadrupoles for Low Emittance Synchrtrons 4332
 
  • S.K. Sharma, T.V. Shaftan, V.V. Smaluk, C.J. Spataro, T. Tanabe, G.M. Wang
    BNL, Upton, Long Island, New York, USA
  • N.A. Mezentsev
    BINP SB RAS, Novosibirsk, Russia
 
  A new lattice design has been proposed recently based on a Complex-Bend concept [1,2] for low emittance syn-chrotrons. The dipoles of a standard DBA lattice are replaced in the Complex Bend by high-gradient (~ 450 T/m) quadrupoles interleaved between discrete dipoles. In another version of the Complex Bend [3] the high gradient quadrupoles are displaced transversely along the beam trajectory to generate the required dipole field. In the latter version the quadrupole strength is reduced to ~ 250 T/m for a lattice that will conform to the layout of the existing NSLS-II 3-GeV storage ring. In this paper we present conceptual designs of a Halbach permanent-magnet (PM) quadrupole, a hybrid PM quadrupole, and a superconducting quadrupole, that can produce the de-sired quadrupole strengths for the Complex Bend appli-cation. REFERENCES [1] T. Shaftan, V. Smaluk and G. Wang, ’The Concept of Com-plex Bend’, NSLS-II Tech note No. 276, Jan 2018. [2] G. Wang et al., ’Complex Bend: Strong-focusing magnet for low emittance synchrotrons’, Physical Review Accelerators and Beams, 21, 100703 (2018). [3] G. Wang et al., ’Complex Bend II’, paper submitted to Physi-cal Review Accelerators and Beams.

 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS094  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS095 High Efficiency High Power Resonant Cavity Amplifier For PIP-II 4335
 
  • M.P.J. Gaudreau, D.B. Cope, E.G. Johnson, M.K. Kempkes, R.E. Simpsonpresenter, N.A. Stuart
    Diversified Technologies, Inc., Bedford, Massachusetts, USA
 
  Funding: Work funded under US DOE Grant No. DE-SC0015780
Diversified Technologies, Inc. (DTI) is developing an integrated resonant-cavity combined solid-state amplifier for the Proton Improvement Plan-II (PIP-II) at Fermilab. The prototype has demonstrated multiple-transistor combining at 70% efficiency, at 675 watts per transistor at 650 MHz. The patent pending design simplifies solid-state transmitters to create straightforward scaling to 200 kW and higher high power levels. A crucial innovation is the reliable "soft-failure" mode of operation; a failure in one or more of the transistors has negligible performance impact. This design couples the transistor drains directly to the cavity without first transforming to 50 Ohms, avoiding the circulators, cables, and connectors that would normally be required. Under an ongoing SBIR grant from the US Department of Energy, DTI designed the system to accommodate over 96 transistors in each 50 kW cavity, with minimal RF, DC, and cooling connections. By the end of the SBIR, DTI will build and demonstrate a complete 100 kW-class (~200 kW) transmitter by combining four cavity modules to show the expandability of the design to very high power levels, comparable to large VEDs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS095  
About • paper received ※ 19 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS099 Fermilab Superconducting Nb3Sn High Field Magnet R&D Program 4338
 
  • G. Velev, G. Ambrosio, E.Z. Barzi, V.V. Kashikhin, S. Krave, V. Lombardo, I. Novitski, S. Stoynev, D. Turrioni, X. Xu, A.V. Zlobin
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
Magnets based on the modern Nb3Sn conductor are the main candidates for future high-energy hadron colliders. Fermilab as part of the U.S. MDP executes an extensive R&D program on these high-field magnets. This program includes basic conductor and material R&D, quench per-formance studies, and building a meter-long high-field demonstrator. This paper summarizes the current status of the program including its recent results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS099  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS100 Measurements of Decay and Snapback in Nb3Sn Accelerator Magnets at Fermilab 4342
 
  • G. Velev, G. Ambrosio, G. Chlachidze, J. DiMarco, S. Stoynev, T. Strauss
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
In recent years, Fermilab has been executing an inten-sive R&D program on Nb3Sn accelerator magnets. This program has included dipole and quadrupole models and demonstrators for various programs and projects, including the HL-LHC accelerator upgrade project. A systematic study of the field decay and snapback during the injection portion of a simulated accelerator cycle was executed at the Fermilab Magnet Test Facility. This paper summarizes the recent measurements of the MQXFS1 short quadrupole model and discusses the results of some previously measured Nb3Sn magnets at CERN
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS100  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS102 Radio Frequency Power Stations for ESS LINAC Spoke Section 4346
 
  • C. Pasotti, M. Cautero, T. N. Gucin
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • C.A. Martins, R.A. Yogi
    ESS, Lund, Sweden
 
  26 equivalent 400 kW Radio Frequency Power Station (RFPS) units will be provided by Elettra as part of the Italian in kind contribution to ESS. They will be installed in the LINAC "Spoke Section". Each RFPS will power a single superconducting spoke cavity in pulsed operation at 352.21 MHz. The RFPS is a complete system that operates unmanned, based on a combination of solid state and tetrode amplification’s stages. The tender specification, the RFPS main features and requested performances are reported here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS102  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS103 First Results of the Analytical Method Used to Reduce Downtime Risk at an Accelerator Facility 4349
 
  • W.C. Barkley, M.J. Borden, R.W. Garnett, M.S. Gulley, E.L. Kerstiens, M. Pieck, D. Rees, F.E. Shelley, B.G. Smith
    LANL, Los Alamos, New Mexico, USA
 
  Funding: DOE
The Los Alamos Neutron Science Center (LANSCE), like many other accelerator facilities, was built decades ago and has been repurposed when new missions were adopted. With an ongoing beam availability expectation of at least 80% delivered to the Experimental Areas (EAs), a balance between cost of spare equipment and budget has always been a challenge. Beam availability data has been meticulously captured and binned over the years to completely characterize the Structures, Systems and Components (SSCs) and other factors that have caused or contributed to accelerator downtime. Over these years, a critical spares list prioritized the spare equipment purchases that were deemed most critical by the management team. In the span of the years 2013 ’ 2015, significant accelerator upgrades and equipment replacements were performed in a set of activities known as LANSCE-RM. Last year, a new risk-based approach was developed by the management team that included an analytical assessment and a quantitative evaluation of probability and consequence. The resulting risk register (risk-based equipment list) is being used to guide decisions on funding requests and provide justification to mitigate operational risks. A paper by the same authors was published at LINAC 2018 describing this risk-based approach that serves to reformulate the critical spares list. This paper, in the sections that follow, expands on the approach by detailing the specific results of the analyses that led to the first risk register. Additionally, it evaluates the historical beam downtime at LANSCE compared to the current funding allocation choices made to increase the reliability.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS103  
About • paper received ※ 10 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS116 The SARAF-LINAC Project 2019 Status 4352
 
  • N. Pichoff, R.D. Duperrier, G. Ferrand, B. Gastineau, F. Gougnaud, M. Jacquemet, C. Madec, O. Piquetpresenter, Th. Plaisant, F. Senée, D. Uriot
    CEA-IRFU, Gif-sur-Yvette, France
  • D. Berkovits, J. Luner, A. Perry, E. Reinfeld
    Soreq NRC, Yavne, Israel
 
  SNRC and CEA collaborate to the upgrade of the SARAF accelerator to 5 mA CW 40 MeV deuteron and proton beams (Phase 2). CEA is in charge of the design, construction and commissioning of the MEBT line and the superconducting linac (SARAF-LINAC Project). The prototypes of the 176 MHz NC rebuncher, SC cavities, RF coupler and SC solenoid-Package have been tested recently. Meanwhile, the cryomodules technical specifications have been written and called for tender. This paper presents the status of the SARAF-LINAC Project at April 2019.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS116  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS117 Results of CEA Tests of SARAF Cavities Prototypes 4356
 
  • G. Ferrand, G. Jullien, S. Ladegaillerie, F. Leseigneur, C. Madec, N. Misiara, N. Pichoff, O. Piquetpresenter, L. Zhao
    CEA-IRFU, Gif-sur-Yvette, France
  • P. Carbonnier, F. Éozénou, E. Fayette, L. Maurice, C. Servouin
    CEA-DRF-IRFU, France
  • A. Pérolat
    CEA, Gif-sur-Yvette, France
 
  CEA is committed to delivering a Medium Energy Beam Transfer line and a superconducting linac (SCL) for SARAF accelerator in order to accelerate 5mA beam of either protons to 35 MeV or deuterons to 40 MeV. The SCL consists in 4 cryomodules. The first two cryomodules host 6 & 7 half-wave resonator (HWR) low beta cavities (β = 0.09) at 176 MHz, and the last two crymodules host 7 HWR medium beta cavities (β = 0.18). The low beta prototype was qualified, the medium beta is being qualified. The results of the RF tests will be presented in this poster.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS117  
About • paper received ※ 23 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)