Author: Björkman, D.
Paper Title Page
WEPMP024 Alternative Material Choices to Reduce Activation of Extraction Equipment 2363
  • D. Björkman, B. Balhan, J.C.C.M. Borburgh, L.S. Esposito, M.A. Fraser, B. Goddard, L.S. Stoel, H. Vincke
    CERN, Meyrin, Switzerland
  At CERN, the Super Proton Synchrotron (SPS) is equipped with a resonant slow extraction system in Long Straight Section 2 (LSS2) towards the fixed target (FT) beam lines in the North Area. The extraction region provides the physics experiments with a quasi-DC flux of high-energy protons over a few seconds, which corresponds to tens of thousands of turns. The resonant slow extraction process provokes beam losses and is therefore the origin of radiation damage and the production of induced radioactivity in this region of the machine. This induced radioactivity imposed high constraints on the equipment design to be reliable to minimise the radiation exposure to personnel during machine maintenance. A detailed FLUKA model was developed in order to better understand the beam loss patterns, activation of the machine and to identify equipment components that could be optimised to reduce the residual dose related hazards. Simulations identified multiple alternative materials for extraction equipment components as well as shielding locations, which implementation could reduce residual activation hazards.  
DOI • reference for this paper ※  
About • paper received ※ 26 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPMP031 SPS Slow Extraction Losses and Activation: Update on Recent Improvements 2391
  • M.A. Fraser, B. Balhan, H. Bartosik, J. Bernhard, C. Bertone, D. Björkman, J.C.C.M. Borburgh, M. Brugger, N. Charitonidis, N. Conan, K. Cornelis, Y. Dutheil, L.S. Esposito, R. Garcia Alia, L. Gatignon, C.M. Genton, B. Goddard, C. Heßler, Y. Kadi, V. Kain, A. Mereghetti, M. Pari, M. Patecki, J. Prieto, S. Redaelli, F. Roncarolo, R. Rossi, W. Scandale, N. Solieri, J. Spanggaard, O. Stein, L.S. Stoel, F.M. Velotti, H. Vincke
    CERN, Meyrin, Switzerland
  • D. Barna, K. Brunner
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
  Annual high intensity requests of over 1019 protons on target (POT) from the CERN Super Proton Synchrotron (SPS) Fixed Target (FT) physics program continue, with the prospect of requests for even higher, unprecedented levels in the coming decade. A concerted and multifaceted R&D effort has been launched to understand and reduce the slow extraction induced radioactivation of the SPS and to anticipate future experimental proposals, such as SHiP* at the SPS Beam Dump Facility (BDF)**, which will request an additional 4·1019 POT per year. In this contribution, we report on operational improvements and recent advances that have been made to significantly reduce the slow extraction losses, by up to a factor of 3, with the deployment of new extraction concepts, including passive and active (thin, bent crystal) diffusers and extraction on the third-integer resonance with octupoles. In light of the successful tests of the prototype extraction loss reduction schemes, an outlook and implications for future SPS FT operation will be presented.
* A. Golutvin et al., Rep. CERN-SPSC-2015-016 (SPSC-P-350), CERN, Geneva, Switzerland, Apr. 2015.
** M. Lamont et al., Rep. CERN-PBC-REPORT-2018-001, CERN, Geneva, Switzerland, 11 Dec 2018.
DOI • reference for this paper ※  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)