Author: Blaszczyk, T.
Paper Title Page
THPGW058 Design and Study of a 6 Degree-Of-Freedom Universal Adjustment Platform for HL-LHC Components 3720
  • M. Sosin, T. Blaszczyk, A. Herty, J. Jaros, H. Mainaud Durand
    CERN, Meyrin, Switzerland
  In the accelerator domain, the safe and easy alignment of components located in radioactive areas, is a main concern. The position of devices, such as magnets and collimators, has to be adjusted in a fast and ergonomic way to decrease the ionizing dose received by the personnel. Each equipment type has its own unique set of requirements such as the weight, or the desired position accuracy. The two opposite approaches are, on one hand, a simple and time-consuming manual adjustment, using regulating screws and shims, and, on the other hand, the use of precise and expensive automatic positioning stages and platforms. In the frame of the High Luminosity LHC project, in order to fulfill the safety and technical requirements of alignment for lightweight components, a standardized system is under development. It will provide easy, low-cost and fast adjustment capability for several types of components that could be embarked on it. This paper describes the design, the study and the test results of such a universal adjustment solution. The engineering approach, the lessons learned, the issues and the mechanical components behavior are presented.  
DOI • reference for this paper ※  
About • paper received ※ 10 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)