Author: Rafique, H.
Paper Title Page
THPMP035 Tactile Collider : Accelerator Outreach to Visually Impaired Audiences 3518
  • R.B. Appleby, B. Jeffrey, B.S. Kyle, T.H. Pacey, H. Rafique, S.C. Tygier, R. Watson
    UMAN, Manchester, United Kingdom
  • T. Boyd, A.L. Healy
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • C.S. Edmonds
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M.T. Hibberd
    The University of Manchester, The Photon Science Institute, Manchester, United Kingdom
  Funding: STFC (UK)
The Large Hadron Collider (LHC) has attracted significant attention from the general public. The science of the LHC and Higgs Boson is primarily communicated to school children and the wider public using visual methods. As a result, people with visual impairment (VI) often have difficulty accessing scientific communications and may be culturally excluded from news of scientific progress. Tactile Collider is a multi-sensory experience that aims to communicate particle accelerator science in a way that is inclusive of audiences with VI. These experiences are delivered as a 2-hour event that has been touring the UK since 2017. In this article we present the methods and training that have been used in implementing Tactile Collider as a model for engaging children and adults with science. The event has been developed alongside experts that specialise in making learning accessible to people with VI.
DOI • reference for this paper ※  
About • paper received ※ 09 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPTS086 Identification and Compensation of Betatronic Resonances in the Proton Synchrotron Booster at 160 Mev 1054
  • A. Santamaría García, S.C.P. Albright, F. Antoniou, F. Asvesta, H. Bartosik, G.P. Di Giovanni, B. Mikulec
    CERN, Geneva, Switzerland
  • F. Asvesta
    NTUA, Athens, Greece
  • H. Rafique
    University of Manchester, Manchester, United Kingdom
  The Proton Synchrotron Booster (PSB) is the first circular accelerator in the injector chain to the Large Hadron Collider (LHC) and accelerates protons from 50 MeV to 1.4 GeV. The PSB will need to deliver two times the current brightness after the LHC Injectors Upgrade (LIU) in order to meet the High Luminosity LHC (HL-LHC) beam requirements. At the current injection energy a large incoherent space charge tune spread limits the brightness of the beams, which is one of the main motivations to increase the injection energy to 160 MeV with the injection provided by Linac4, a new H linear accelerator. The higher injection energy will allow doubling the beam intensity while maintaining a space charge tune spread similar to current values. The degradation of the beam brightness due to the tune spread can be minimized with a proper choice of working point and an efficient compensation of resonances. In this paper, we present the measurement of the betatronic resonances in the four rings of the PSB at 160 MeV before the Long Shutdown 2, as well as the results of a proposed compensation scheme.  
DOI • reference for this paper ※  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)