OVERVIEW ON SC CH-CAVITY DEVELOPMENT∗

M. Busch†, M. Basten, T. Conrad, P. Müller, H. Podlech, M. Schwarz
IAP, Goethe University, Frankfurt am Main, Germany
W.A. Barth1, F.D. Dziuba1,2, M. Miski-Oglu1
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
1also at HIM, Mainz, Germany
2also at KPH, Johannes Gutenberg University, Mainz, Germany

Abstract

During the last decades an enormous effort has been put into the development of low beta structures for hadron acceleration worldwide. Since hadrons exhibit a very inert velocity gain due to their high mass this change in speed has to be taken into account when utilizing low beta cavities. At the Institute of Applied Physics (IAP), Frankfurt, Germany, five multi-cell CH-cavities (Crossbar H-Mode) have been developed and tested for different kind of applications so far. In addition to the successfully tested original 360 MHz prototype further structures envisaged for beam operation have been fabricated and tested. Overview, status and outlook of this cavity technology is topic of this contribution.

OVERVIEW AND STATUS

360 MHz CH-cavity Prototype

The first milestone in the development of superconducting CH-cavities was the successful design and test of the 360 MHz, 19-cell, $\beta_{\text{geom.}} = 0.1$ CH-cavity [1]. After several chemical and HPR (High Pressure Pure Water Rinsing) treatments this resonator reached an accelerating gradient of 7 MV/m (see Fig. 1), accordingly 5.6 MV of voltage in total. It was the first tested, low-beta, multi-cell cavity with an unrivaled voltage gain worldwide. Meanwhile the cavity has been reactivated to serve for investigations regarding advanced surface processing schemes like mild baking concepts or plasma discharge cleaning.

Compact 325 MHz CH-cavity

The next step was the design of a compact, 7-cell, 325 MHz CH-cavity at $\beta_{\text{geom.}} = 0.16$ and a new kind of tuning system to adjust the frequency dynamically both slowly and fast during beam operation [3–5]. The novel tuner consists of a bellow type geometry which is put inside the cavity and connected to the outside by a rod and can be operated by a piezo and a stepping motor drive, respectively. Four additional flanges for surface preparation enable an improved cavity performance after HPR. Another aspect providing a compact geometry was the implementation of inclined stems at the first and last drift tube. Consequently, this cavity achieved an accelerating gradient of 8.5 MV/m at 4 K resulting in a voltage of 4.2 MV. Furthermore, tests at 2 K yielded a gradient of 14.1 MV/m (see Fig. 2) and a voltage of 7 MV, respectively [6, 7].

217 MHz Demonstrator Cavity (CH0) for HELIAC

With the very promising results from the previous two cavities it was decided to elaborate a newly planned, dedicated, energy-variable, superconducting, cw heavy ion linac: HELIAC (HElmholtz LInear ACcelerator) at GSI, Darmstadt, in collaboration with HIM Mainz and GU Frankfurt based upon the aforementioned novel type of multi-cell resonators with EQUUS (EQUidistant uLtigap Structure) beam dynamics concept [8–10]. As a first step towards

Figure 1: $Q_0-E_a$-curve of the 360 MHz CH prototype [2].

Figure 2: $Q_0-E_a$-curve of the 325 MHz CH-cavity [7].
the whole linac a so-called demonstrator cryomodule comprising two sc 9.3 T solenoids and a novel sc 217 MHz CH-cavity (CH0) with 15 equidistant accelerating gaps has been developed [12–15]. The geometry of CH0 is even more complex and challenging than the structure of the 325 MHz CH-cavity due to the higher amount of accelerating gaps and tuners and the lower $\beta$ (thus, providing less space). After final surface preparation (BCP (Buffered Chemical Polishing + HPR) the cavity was delivered to IAP for tests in a vertical cryostat surpassing the demanded design gradient and quality factor despite field emission (see Fig. 3, red circles) [16]. Returning to Research Instruments (RI, manufacturer) for the final assembly of the helium vessel and further HPR preparation the cavity has been tested at GSI inside a horizontal cryostat. Due to an HPR treatment utilizing the additional preparation flanges the performance of the cavity could significantly be improved. An accelerating gradient of 9.6 MV/m at $Q_0 = 8.14 \times 10^8$ has been achieved (see Fig. 3, blue rhombs) [11, 17]. Furthermore, cavity CH0 has successfully been installed at GSI inside the demonstrator cryomodule (together with the two sc solenoids) and accelerated heavy ion beams from the HLI (High Charge State Injector) with various mass-to-charge ratios [18, 19]. Also the tuning system based on bellow tuners could successfully be operated during the beam tests with a stepper motor [20].

**CH1/2 for the HELIAC Project**

Another step further leading to HELIAC was realized within the development of the Advanced Demonstrator concept [21–23]. For this cryomodule scheme two structurally identical CH-cavities (CH1 and CH2 in the HELIAC pattern) have been developed at IAP [24]. After fabrication and surface processing of CH1 this cavity reached a gradient of 9 MV/m (at $Q_0 = 2.4 \times 10^8$) in a first vertical test setup in Frankfurt (see Fig. 4) [25]. By now this cavity has been returned to RI for further surface cleaning processes. Meanwhile CH2 is prepared for first cold tests inside the vertical cryostat at Frankfurt.

**CONCLUSION AND OUTLOOK**

CH-cavities have proven to deliver high real estate gradients and in this context also high voltage gains enabling compact, energy-variable Linacs with a minimum number of resonators and concurrently preserving beam quality [26]. As a follow up of CH0, CH1 and CH2 the next HELIAC cavities are under design investigation with a main focus of attention to geometry and tuner design. Figure 5 shows the present simulation status. All cavities described in the previous chapters are depicted in Fig. 6 and their rf parameters are summarized in Table 1.

**ACKNOWLEDGEMENTS**

This work has been supported by GSI, BMBF contr. No. 05P18RFB1. We also acknowledge the support of the European Framework Programme H2020 MYRTE Contr. No. 662186 and of the Helmholtz International Center for FAIR within the framework of the LOEWE program (Landesoffensive zur Entwicklung Wissenschaftlich-Ökonomischer Exzellenz) launched by the State of Hesse. We’d also like to thank our partners at GSI/HIM for the close and kind collaboration.
Table 1: Main RF Parameters of the CH-Cavities

<table>
<thead>
<tr>
<th>Parameter and Unit</th>
<th>360 MHz CH</th>
<th>325 MHz CH</th>
<th>217 MHz CH0</th>
<th>217 MHz CH1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f$ in MHz</td>
<td>360</td>
<td>325</td>
<td>217</td>
<td>217</td>
</tr>
<tr>
<td>No. of cells</td>
<td>19</td>
<td>7</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>$\beta$</td>
<td>0.1</td>
<td>0.16</td>
<td>0.059</td>
<td>0.069</td>
</tr>
<tr>
<td>Length ($\beta \lambda$-def.) in mm</td>
<td>810</td>
<td>505</td>
<td>612</td>
<td>382</td>
</tr>
<tr>
<td>Diameter in mm</td>
<td>274</td>
<td>347</td>
<td>409</td>
<td>400</td>
</tr>
<tr>
<td>$E_a$ in MV/m (at 2 K)</td>
<td>7</td>
<td>8.5 (14.1)</td>
<td>9.6</td>
<td>9</td>
</tr>
<tr>
<td>$E_p/E_a$</td>
<td>5.6</td>
<td>5</td>
<td>6.3</td>
<td>6</td>
</tr>
<tr>
<td>$B_p/E_a$ in mT/(MV/m)</td>
<td>5.7</td>
<td>13</td>
<td>5.7</td>
<td>&lt;10</td>
</tr>
<tr>
<td>$R_a/Q_0$</td>
<td>3180</td>
<td>1260</td>
<td>3240</td>
<td>1070</td>
</tr>
</tbody>
</table>

REFERENCES


[16] F.D. Dziuba et al., “First Performance Test on the Superconducting 217 MHz CH Cavity at 4.2 K”, in Proc.


