Recent Progress in the Production of Medical Radioisotopes with RFT–30 Cyclotron

23 May 2019

Eun Je Lee, Young Bae Kong, Ho Seung song, Jeong Hoon Park, Min Goo Hur, Seung Dae Yang

Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)
Cyclotron Applications & Research Facilities (CARF)

Current status of RFT-30 cyclotron

Production of medical radioisotopes with RFT-30 cyclotron

Future plan
Korea Atomic Energy Research Institute (KAERI)

- **Daejeon**
 - Korea Atomic Energy Research Institute (KAERI)
 - KOrea Multi-purpose Accelerator Complex (KOMAC)
 - 100 MeV proton LINAC

- **Gyeongju branch**
 - 30 MeV proton cyclotron

- **Jeongeup branch**
 - Advanced Radiation Technology Institute (ARTI)
◆ Construction: July 2007 ~ April 2009
◆ 5,565.15 m², 1 basement, 2 stories
1st floor

- Cyclotron main vault, Target irradiation room
- Hot cell zone: RI & Radiopharmaceutical production & care
- GMP zone: RI & Radiopharmaceutical control (plan)
- Hot lab: RI labelling experiment
- Machine workshop
◆ 2nd floor

- Control room for RFT-30
- Lab. of chemical synthesis
- Lab. of chemical synthesis (organic/inorganic)
- Lab. of auto-synthesizer and targetry
- HVAC room Hot & Cold zone

◆ Basement

- Utilities for Cyclotron & Facilities
- Radioactive waste storage
1. RFT–30 cyclotron

► Developed by Korea Institute of Radiological & Medical Sciences (KIRAMS) (2005~2007)

► Specification
 - Ion source: Negative hydrogen ion (H⁻), 10 mA (Max.) (D–Pace, Inc.)
 - RF system: 63.96 MHz
 - Extracted beam: proton (H⁺), using carbon stripper foil
 - Beam energy: 15 ~ 30 MeV
 - Beam current: ~250 μA (Max.)
Carbon stripper foil: stripping 2 electrons from H^- ($\text{H}^- \rightarrow \text{H}^+$)

Ion source (production of H^-)

Inflector (vertical → horizontal)

Switching magnet (beam line selection)

Current status of RFT-30 cyclotron
2. Beam lines

BL1-1: PET RI production (\(^{18}\text{F}\) etc.)
BL1-2: proton/neutron user service
BL2-1: RI production (solid target)
BL2-2: under development
Production of medical radioisotopes with RFT-30 cyclotron

- Proton-rich radioisotopes, usually β + emitters, are produced.
- Positron Emission Tomography (PET)
Production of medical radioisotopes with RFT-30 cyclotron

Licensing modification (Jan. 2018)
production for research purpose only → production and distribution

<table>
<thead>
<tr>
<th>Row</th>
<th>Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>행</th>
<th>방사능량</th>
<th>핵종</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2775 Bq</td>
<td>Co-55</td>
</tr>
<tr>
<td>2</td>
<td>231.25 GBq</td>
<td>Cu-64</td>
</tr>
<tr>
<td>3</td>
<td>5550 Bq</td>
<td>Ga-67</td>
</tr>
<tr>
<td>4</td>
<td>222 Bq</td>
<td>I-131</td>
</tr>
<tr>
<td>5</td>
<td>105 Bq</td>
<td>In-111</td>
</tr>
<tr>
<td>6</td>
<td>231.25 GBq</td>
<td>Nb-90</td>
</tr>
<tr>
<td>7</td>
<td>231.25 GBq</td>
<td>Pd-103</td>
</tr>
<tr>
<td>8</td>
<td>37 GBq</td>
<td>Tc-94m</td>
</tr>
<tr>
<td>9</td>
<td>3700 Bq</td>
<td>Tc-94m</td>
</tr>
<tr>
<td>10</td>
<td>74 GBq</td>
<td>Zr-90</td>
</tr>
</tbody>
</table>
Production of medical radioisotopes with RFT-30 cyclotron

We are interested in the production of
- 89Zr, 64Cu, 44Sc, 57Co, and so on.
- Generator system: 68Ge/68Ga, 44Ti/44Sc.
Production of medical radioisotopes with RFT-30 cyclotron

Current status of RI production

1) 89Zr (≈ 2 mCi/µAh)

- once or twice/week
- distributed to major hospitals in Korea
 (including Seoul National University Hospital, Samsung Medical Center)
2) 64Cu and 57Co

- 64Ni(p, n)64Cu
- 58Ni(p, 2n)57Cu \rightarrow 57Ni \rightarrow 57Co

- Pilot production using natural Ni target
- Separation experiment has been performed.
- Mass production will be carried out using enriched Ni targets.
Production of medical radioisotopes with RFT-30 cyclotron

3) ^{44}Sc

$^{44}\text{Ca}(p, n)^{44}\text{Sc}$

- Pilot production using natural CaCO$_3$ target
- Separation experiment has been performed.
- Mass production will be carried out using enriched CaCO$_3$ targets.
Production of medical radioisotopes with RFT-30 cyclotron

4) $^{68}\text{Ge}/^{68}\text{Ga}$

- $^{\text{nat}}\text{Ga}(p, xn)^{68}\text{Ge} \rightarrow ^{68}\text{Ga}$

- first production (Feb. 2015, ~10 mCi)
- 2150 μAh irradiation (Aug. 2018, ~80 mCi)
- Separation process is ongoing.

5) ^{18}F

- $^{18}\text{O}(p, n)^{18}\text{F}$

- If requested
- User support including labelling experiment, imaging, and so on
Production of medical radioisotopes with RFT-30 cyclotron

Selected as ‘Top 100 national R&D performance in 2018’
Educational support

- **IAEA/WCI/KAERI training course**
 - Title: Diagnostic and Therapeutic Radioisotopes and Radiopharmaceuticals Application
 - 2018.10.23~10.26 (4 lecture, 1 exercise)

- **RCARO/KAERI introductory training**
 - Title: Introductory Training Course on Radiation Technology and its Applications
 - 2018.10.23~10.24 (2 lecture)

- **KOICA/IAEA/KAERI joint training program**
 - Title: Introductory Training Course on Radiation Technology and its Applications
 - 2018.09.18. (2 lecture)

*WCI: World Council on Isotopes
*RCARO: RCA (Regional Cooperative Agreement in Asia and the Pacific region) Regional Office
*KOICA: KOrea International Cooperation Agency
Future Plan

▶ Production of more various RIs
 – 67Cu, 55Co, 103Pd, and so on

▶ Production & Distribution
 – F−18: on-site research user
 – Zr−89: 130mCi/batch → 500 mCi/batch
 – Ge−68: 80mCi/batch → ~1 Ci/batch, Generator
Thank you for your attention!